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Intensity-resolved above-threshold ionization of xenon with short laser pulses
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We present intensity-resolved above-threshold ionization (ATI) spectra of xenon using an intensity scanning
and deconvolution technique. Experimental data were obtained with laser pulses of 58 fs and a central wavelength
of 800 nm from a chirped-pulse amplifier. Applying a deconvolution algorithm, we obtained spectra that have
higher contrast and are in excellent agreement with characteristic two and ten Up cutoff energies contrary to
that found for raw data. The retrieved electron-ionization probability is consistent with the presence of a second
electron from double ionization. This recovered ionization probability is confirmed with a calculation based
on the Perelomov, Popov, and Terent’ev tunneling ionization model [Sov. Phys. JETP 23, 924 (1966)]. Thus,
the measurements of the photoelectron yields and the developed deconvolution technique allowed retrieval of
more accurate spectroscopic information from the ATI spectra and ionization probability features that usually
are concealed by volume averaging.
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I. INTRODUCTION

The focal volume of a laser beam contains a continuum
of intensities that vary both radially and longitudinally with
respect to the axis of propagation and range from zero to some
peak intensity I0. Each intensity provides a unique ion yield
contribution depending on the probability of ionization P (I )
and the volume occupied by the radiation at that intensity.
This results in an averaging effect that ultimately reduces
the intensity resolution of an experimental measurement [1].
This lack of resolution masks intensity-dependent phenomena,
such as the ionization probability, ac-Stark shifts, and Rabi
oscillations in the atomic energy levels [2]. It has been shown
that ions can be distinguished according to their location
in the laser focus from which they are produced [3]. But
although higher ionization states A+n have been observed in
ion time-of-flight (TOF) measurements [1,3], to the best of
our knowledge, the explicit manifestation of photoelectrons
specific to a charge state greater than one has not been
observed. The difficulty of such detection follows from the
fact that measuring devices rarely are able to determine the
location within the focus that an electron originated from.
Insufficient temporal resolution results in integration of the
signal over the entire focal volume of the laser. For instance,
distinguishing two electrons in a field-free region each with
1.5 eV of kinetic energy and a separation distance of 10 μm
would require data-acquisition electronics with 13-ps temporal
resolution. However, fast data-acquisition electronics have
timing resolutions of a few hundred picoseconds.

Theoretical calculations for laser-matter interactions typi-
cally are carried out using plane waves of coherent radiation
with some time-dependent amplitude modulation [4,5], and
the probability of ionization is determined after the interaction.
Because, in practice, ionization experiments with short laser
pulses record the ionization yield after the pulse has interacted
with the target and because experimental results are spatially
averaged, theoretically determined ionization probabilities are
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averaged artificially for comparison with experiments. The
need to compare with the more fundamental nonspatially
averaged theoretical results has motivated the design of
intensity-resolved experiments. In them, the goal is to remove
the influence of the spatially varying intensity distribution from
laser beam modes and isolate the result of a single intensity.
Hansch and Van Woerkom [6] used a slit to collect ions from
a small cross-sectional area of the laser focus. The novelty of
their approach was that they varied the intensity in which the
detected ions were born by changing the position of the slit
along the z axis relative to the laser focus. Walker et al. [7]
coupled this measurement with an algorithm that removes the
effect of radial variation in the laser intensity. This combined
technique is known as intensity selective scanning (ISS). Bryan
et al. [8] modified ISS by accounting for diffraction effects
along the z axis of the laser focus.

Goodworth et al. [9] developed a deconvolution scheme
which used discretized isointensity rings of the two-
dimensional cross sections of the laser focus. An off-axis slit
aligned perpendicular to the z axis determined the width of
these cross sections from which the ions were collected. The
volume of each isointensity ring was represented by a matrix
element Vn,s where n indexes the z-axis position and s indexes
the intensity of the ring. Deconvolution, to obtain a probability
Ps , was carried out by an inverse matrix V −1

s,n multiplication of
the yields Yn from the z-scanned measurement: Ps = V −1

s,n Yn.
Other methods have employed purely experimental tech-

niques to measure ions from an isointensity volume of the
laser focus, which is confined in all three spatial dimensions.
Schultze et al. [10] and Strohaber and Uiterwaal [3] used
an imaging TOF spectrometer to sort positive ions from the
focus. Ions created at different locations within the focus arrive
at a detector at different times. In their experiments, arrival
times coupled with longitudinal and transverse measurements
provide the ability to both reconstruct the spatial isointensity
shells of the laser focus and extract intensity-resolved ioniza-
tion probabilities from intensity scans.

Strohaber et al. [11] introduced the multiphoton expansion
as an analytical deconvolution of the laser focal volume by
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solving the linear Volterra equation of the first kind. The
solution for the ionization probability is represented by a
power series of the intensity suggesting the name of this
approach. The Volterra integral represented the total number
of ions detected from an N -dimensional (N = 1, 2, or 3)
volume within the focus. As such, this approach allows for the
deconvolution of a variety of intensity scanning experimental
schemes.

In the present paper, we developed a generalized algorith-
mic technique to recover intensity-resolved above-threshold
ionization (ATI) energy spectra using photoelectrons; addi-
tionally, this technique may also be used for other spatially
averaged data. The technique involves obtaining ATI measure-
ments using short laser pulses of different peak intensities and
employing a deconvolution algorithm to remove the blurring
effect of the spatially varying intensities. The results of this
procedure revealed the presence of an electron from a second
ionization and an unanticipated and unreported shift in the
cutoff energies.

II. DISCRETE DECONVOLUTION AND
REGULARIZATION

The measured ionization yield of an atom Y (I0) can be
expressed as a convolution of the ionization probability per
unit volume P (I ) and the derivative of the volume V (I0,I )
enclosing all intensities greater than I up to a maximum or
peak intensity I0,

Y (I0) =
∫ I0

0
P (I)

∣∣∣∣∂V (I0,I)

∂I

∣∣∣∣ dI , (1)

where V (I0,I ) contains the geometric information about the
focal region being measured. Thus, it is implicitly dependent
on the optics used and any apertures between the interaction
region and the signal detector. The functional form of V (I0,I )
in one, two, and three dimensions is given in Strohaber et al.
[11].

To deconvolve the ionization probability P (I ) from Eq. (1),
the experiment must be repeated more than once using different
peak intensities. Therefore, we introduce the notation In

to denote the peak intensity of the laser beam in the nth
experiment. We will now construct a numerical approximation
of Eq. (1). Note that the magnitude of both V (In,I ) and its I

derivative become infinite as I approaches zero. Therefore, the
lower limit of Eq. (1) is computationally impractical, and the
interval of integration will need to be truncated by a parameter
δI � In − δI ,

Y (In) =
∫ δI

0
P (I)

∣∣∣∣∂V (In,I )

∂I

∣∣∣∣ dI+
∫ In

δI

P (I)

∣∣∣∣∂V (In,I )

∂I

∣∣∣∣ dI

≈
∫ In

δI

P (I )

∣∣∣∣∂V (In,I )

∂I

∣∣∣∣ dI . (2)

As In increases, the integral over the interval [δI ,In] more
accurately approximates the full integral over [0,In]. Since the
ionization probability P (I ) tends to decay with decreasing
intensity, this also reduces the introduced approximation error.

To estimate Eq. (2) numerically, we can discretize the
integral using a Riemann sum. The integration interval is
partitioned by introducing an ordered set of intensities Is ∈

{I1,I2, . . . ,IN } such that I1 > I2 > · · · > IN > δI . Note that
our choice of notation for In deliberately restricts the set
of peak intensities at which we experimentally measure
the yield Y (In). Since V (In,Is) monotonically increases
with decreasing Is , the volume V (In,δI ) is also implicitly
partitioned. We can, therefore, introduce differential volume
elements �V = Vn,s for the set Is at a peak intensity In to
approximate Eq. (2),

∫ In

δI

P (I )

∣∣∣∣∂V (In,I )

∂I

∣∣∣∣ dI = lim
N→∞

N∑
s=n

Vn,sP (Is)

≈
N∑

s=n

Vn,sP (Is). (3)

Vn,s and the corresponding Riemann sum can be defined in
a number of different ways (midpoint rule, trapezoidal rule,
Simpsons rule, etc . . . ). However, any definition of Vn,s must
satisfy

N∑
s=n

Vn,s = V (In,δI ), (4)

meaning that the sum of all differential volume elements must
equal the total volume enclosed by the smallest intensity δI .
Moreover, to obtain a good approximation to Eq. (3), the
condition Vn,s � V (In,δI ) should be satisfied for all s. We
chose, for simplicity, to define Vn,s by taking the difference
between the volumes enclosed by two consecutive isointensity
shells,

Vn,s ≡
{|V (In,Is+1) − V (In,Is)| → s � n,

0 → s < n.
(5)

This definition follows from the discrete first derivative of
the volume,

�V (In,Is)

�I
�I = V (In,Is) − V (In,Is+1)

Is − Is+1
(Is − Is+1), (6)

and is equivalent to taking a right Riemann sum.
If the indices n and s have the same dimensions

(n,s ∈ {1,2, . . . ,N}), Eq. (3) produces a system of linear
equations that can be expressed in matrix form as Y = V̂ · P ,
where V̂ ≡ Vn,s denotes the differential volume matrix, P ≡
(P (I1),P (I2), . . . ,P (IN ))T is the probability array, and Y ≡
(Y (I1),Y (I2), . . . ,Y (IN ))T is the signal yield array. Solving
for the ionization probability per unit volume P , we obtain

P = V̂ −1 · Y = (V̂ T V̂ )−1V̂ T · Y . (7)

A one-dimensional example illustrating the construction of
Eq. (7) is presented in Appendix A.

Since IN would be the smallest element in the list of
measured intensities, a free parameter IN+1 ≡ δI must be
chosen for the calculation of an outermost volume V (In,IN+1)
for all n (see Fig. 1). The choice of the free parameter IN+1 =
δI in Eq. (3) can be determined from VN,N = Y (IN ) /P (IN ),
which assumes some knowledge of the probability P (IN ). We
note that, for some simple atoms in the multiphoton regime,
the probability P (IN ) can be determined theoretically using
perturbation theory [12]. It is known that the multiphoton
yield at low intensities is proportional to the probability, since
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FIG. 1. (Color online) An example schematic in one dimension
showing how volume elements are related to peak intensities. Here the
total number of experiments is N = 3. The boundary of each volume
(horizontal) is set by intensities δI and I3. δI is a free parameter
that provides an outer boundary for the calculation of the volume
elements. The central blue region represents V3,3, the sandwiched red
regions are V2,3, and the outer gold regions are V1,3. Each of these
three volumes corresponds to the same ionization probability P (I3).

the highest intensity of the beam dominates the signal. We,
therefore, determine δI by requiring that the derivatives of the
probability and yield are equal at IN , i.e., �P/�I = �Y/�I0.

It is important to note that, in practice, the inversion in
Eq. (7) is unstable with small variations in the yield Y .
However, by implementing a modified version of the variation
minimization algorithms proposed by Le et al. [13] and
Chartrand and Wohlberg [14], we are able to introduce a
regularization term to the right hand side of Eq. (7) to obtain
the regularized probability P̄ i ,

P̄ i = (V̂ T V̂ − 2βM̂i∇̂2)−1V̂ T Y . (8)

A more detailed discussion of the regularization algorithm,
including the regularization term 2βM̂i∇̂2, and the iteration
subscript i are discussed in Appendix B. The iteration of Eq.
(8) and its regularization term to find P̄ i hereafter is referred
to as the discrete deconvolution and regularization (DDAR)
algorithm.

III. EXPERIMENTAL SETUP

The ATI apparatus is depicted in Fig. 2. Target xenon atoms
were ionized with short laser pulses. A series of ionization
measurements was taken for 120 different peak laser intensities
ranging within 3 × 1013−8 × 1014W/cm2. All other laser
parameters, such as mode quality, pulse duration, and spectral
bandwidth were unchanged.

The Ti:sapphire laser oscillator provides 20-fs mode-
locked laser pulses at a repetition rate of 80 MHz. These
pulses are seeded into a regenerative laser amplifier, which
outputs 58-fs (measured by frequency resolved optical gating,
GRENOUILLE 8-20, Swamp Optics, LLC) laser pulses at
a repetition rate of 1 kHz, and a central wavelength of
800 nm. Since shorter pulses have a higher peak intensity
for a given pulse energy, temporal compression of the laser

FIG. 2. (Color online) Experimental setup: M: mirror; WP: half-
wave plate; PD: photodiode; PBC: polarizing beam-splitter cube; L:
lens; MCP: chevron microchannel plate; PM: power meter.

pulses in the focus was achieved by maximizing the integrated
photoelectron yield in the ATI apparatus by adjusting the
grating compressor in the laser amplifier. The maximum pulse
energy was approximately 0.8 mJ.

Laser pulses were detected before the half-wave plate of the
attenuator by a photodiode, and the signal was used to trigger
the data-acquisition software. The attenuator consisted of a
half-wave plate that changed the polarization of the initially
horizontally polarized light and a polarizing cube that filtered
out vertically polarized light while horizontally polarized light
passed through. The orientation of the wave plate was varied
such that, after the polarizing cube, the desired intensity is
achieved in the laser focus.

The vacuum chamber was filled with xenon gas of 99.999%
purity (Advanced Specialty Gasses) through a variable leak
valve. The xenon pressure (5 × 10−6 mbar) was three orders
of magnitude higher than the background pressure in the
ionization chamber. Because the ionization potential of water
(12.61 eV) is roughly equal to that of xenon (12.15 eV), a
large-surface-area vacuum feedthrough, located on the TOF
chamber, was chilled using liquid nitrogen to freeze out
residual water molecules from the background vacuum. The
laser beam was focused by a 20-cm achromatic lens. Ionized
electrons were ejected along the polarization of the laser field
in the direction of the microchannel plate (MCP) detector.
The electrons traveled within a μ-metal TOF tube in a
field-free region. Electrons from the entire focal volume of
the laser were measured at the detector. The signals from
the MCP were amplified by a high bandwidth Mini-Circuits
ZKL-2 preamplifier before being registered by a FAST
ComTec MCS6 multiscaler with 100-ps timing resolution. A
power meter (PM) measured the average laser power, which
is proportional to the average peak laser intensity in the
focus.

The DDAR algorithm was written in Mathematica and
was employed on an Intel i7 desktop computer having
16 GB of memory. The algorithm deconvolved the entire
data set (a 19.0-MB matrix of raw electron TOF spectra) in
0.824 s.
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FIG. 3. (Color online) The experimentally measured electron
yield Y on a log-log plot. Two slopes are plotted showing the intensity
dependence: a slope of 5 (solid line) and a slope of 3/2 (dashed line).
The change in slope occurs slightly above the saturation intensity
Isat = 1.2 × 1014W/cm2.

IV. RESULTS

The electron-ionization yield as recorded along the laser
polarization is shown in Fig. 3. The saturation intensity is
measured to be Isat = 1.2 × 1014W/cm2. On a log-log plot,
the yield curve shows a slope of 5 for intensities less than
Isat and a slope of 3/2 for intensities greater than Isat. The
slope of 3/2 arises from volumetric integration of the electrons
ionized from all intensities in the Gaussian beam. As the peak
intensity I0 ≡ I (r = 0) increases, the total volume enclosed
by an intensity I (r > 0) < I0 grows as I

3/2
0 [15]. As this

volume grows, so does the yield, and the largest contribution
to the yield after the saturation intensity comes from those
intensities with the highest ionization probability.

One of the effects of using regularization is that the resulting
yield Ȳ is smoother than the original data. This provides
more stability to the retrieved probability P̄ . Increasing the
regularization parameter β strengthens the regularization and
minimizes discontinuities in the derivative of P̄ . Consequently,
we used β = 0.5. Since P̄ is the ionization probability per
unit volume, we divide it by the gas density (proportional to
pressure) in the laser interaction region to obtain the ionization
probability per atom. Electrons from different ion charge states
have unique ionization probability functions that approach
unity as intensity increases. However, these charge states
have different saturation intensities. Hence, the graph of the
probability first saturates (approaches 1) at 1.2 × 1014W/cm2

and then reaches a maximum value of 2 at approximately
2.7 × 1014W/cm2 (Fig. 4). This second saturation primarily is
attributed to single ionization of the singly charged xenon ion.
The MCP detector cannot distinguish between electrons from
different charge states. Therefore, electron yields from both
species and, by implication, their probabilities are summed
giving a “stair step” appearance. In addition to the deconvolved
experimental data, Fig. 4 also shows the results of a PPT
tunneling ionization simulation [16]. The red curve is the
result of summing the calculated ionization probability of both
the Xe+ and Xe2+ ions, whereas, the blue curve exclusively
represents the Xe2+ ionization probability.

FIG. 4. (Color online) Recovered electron probability on a log-
log plot (dotted line). The red curve is a Perelomov, Popov, and
Terent’ev (PPT) theory simulation of the xenon probability for
electron yields for Xe1+ and Xe2+. The blue curve shows the
simulation of the electron yield probability for Xe2+ electrons alone.
The deconvolution diverges at the high intensity end point.

Even though the signal shows significant noise, DDAR still
recovers the probability. Multiple ionization of Xe has been
measured by other groups using ion, but not electron, detection
as in this experiment and compares favorably with our results
[1]. The counting electronics naturally groups the electrons
according to when they arrive or by their TOF. By transforming
this time series into an energy spectrum and applying DDAR to
the yield rates for each electron energy, the intensity-resolved
(volume-independent) energy spectra are obtained. One such
spectrum is plotted in Fig. 5.

For the following discussion of features in the ATI spectra,
see Fig. 5. The first plateau between 0 and 8 eV is the result
of “direct” electrons that do not scatter off the parent ion
after being ionized. These electrons have a classical cutoff
energy of 2Up, where Up is the ponderomotive energy of
the laser field [17]. In this low-energy region, REMPI is
expected to dominate the ATI peak structure (inset) [18].
The second plateau between 12 and 25 eV is dominated by

FIG. 5. (Color online) Intensity-resolved ATI energy spectra at
8.7 × 1013 W/cm2 of electrons per laser pulse. The red curve is
the measured data prior to being deconvolved. The deconvolution
shows more pronounced features. The inset shows the 2Up low-
energy region of the same data. Resonantly enhanced multiphoton
ionization (REMPI) peaks can be seen at energies less than 4 eV.
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the interference of electrons which follow different quantum
trajectories and are freed with an initially near-zero velocity by
either tunneling ionization or resonant multiphoton ionization
at a channel closing [19]. This ionization mechanism also
makes the second plateau important for the study of high
harmonic generation [20]. As electrons are accelerated by the
electric field, the different quantum paths of electrons with
equal momenta can constructively interfere with each other,
leading to an enhancement in the ionization yield [19,21]. The
third plateau, which ranges from 30 to 50 eV, corresponds to
elastic backscattering of the electron off the parent ion. This
plateau has a cutoff energy of 10.007Up due to the maximum
classical energy that a backscattered electron can have [17].

In Fig. 5, the experimental data show a 10Up value of
�40 eV, which is smaller than that of the deconvolution (�45
eV). This can be explained by the fact that the peak intensity for

FIG. 6. (Color online) Density plots of the ATI spectra as a
function of energy (horizontal axis) and intensity (vertical axis). In
both graphs, the 2Up and 10Up cutoff energies for each intensity
are denoted by the dotted black and white lines, respectively. (a)
The density plot of the experimental data shows a discrepancy
between the calculated cutoff energies and the measured ones. (b)
The deconvolution of the experimental data recovers the calculated
cutoff energies and suggests a better agreement with theory [17].

each of our Gaussian beams has the smallest three-dimensional
volume. In our case, we can verify this explicitly by calculating
the volume elements of the beams at each peak intensity
[Eq. (5)]. Figure 6 shows density plots of the ATI spectra
as a function of the electron energy (horizontal axis) and laser
intensity (vertical axis). The dotted curves drawn on top of the
density plots are the 2Up and 10Up cutoff energies calculated
from the formula,

Up (eV) = 9.33 × 10−14I0(W/cm2)λ2(μm2), (9)

where λ is the center wavelength in micrometers, I0 is the
intensity in W/cm2, and the resulting ponderomotive energy
has units of eV. For our raw experimental data [Fig. 6(a)],
the measured 2Up and 10Up values for each intensity were
smaller than the values calculated with the DDAR algorithm.
This discrepancy could not be removed by adjusting the
intensity calibration by a scaling factor. The deconvolution,
however, gives good agreement with the calculated cutoff
energies [Fig. 6(b)]. So, even though the ionization probability
is, in general, higher for larger intensities, the ionization
contributions from intensities slightly lower than the peak
value can significantly change the spectrum due to their larger
volumes. This is important because it means that the peak
intensity and energy of a laser pulse cannot be calculated
directly from volume integrated data using the cutoff energies
of the spectrum. It should also be noted that none of the spectra
from the set of raw data show as much contrast in the ATI peaks
as the deconvoluted energy spectra.

V. CONCLUSION

The volume integration in the laser focus reduces the
intensity resolution of an experimental measurement. There-
fore, we developed a DDAR algorithm and applied it to the
xenon photoelectron yield to obtain ionization probabilities
and intensity-resolved ATI spectra. Our results show that both
single- and double-ionization probabilities can be retrieved by
inverting the electron yield with DDAR. The retrieved Xe+
ATI spectrum showed sharper peaks throughout the entire
energy range compared to the directly measured one. The
2Up plateau region where femtosecond pulse ionization from
Rydberg states is known to dominate the spectrum also shows
increased contrast after application of the algorithm.

Applying the DDAR algorithm also recovered 2Up and
10Up cutoff energies that are in excellent agreement with
theory, whereas, the experimental data are not. In the latter,
intensities that are below the peak intensity can dominate the
ATI spectrum due to their much larger differential volumes.
Consequently, this leads to a discrepancy between the intensity
predicted from the 10Up cutoff energy and the actual peak
intensity. This discrepancy cannot be removed by rescaling
the intensity calibration by a multiplicative factor. Therefore,
we found that the unwanted volume averaging effect can lead
to an underestimation of the 10Up cutoff energy (and this
discrepancy grows with increasing intensity) by as much as
30%.
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APPENDIX A: ONE-DIMENSIONAL ILLUSTRATION OF
THE DECONVOLUTION ALGORITHM

As an example, let us consider a one-dimensional case when
an experiment is performed at two (N = 2) different laser peak
intensities I1 > I2 and the volume elements are V1,1, V1,2, and
V2,2 (see Fig. 7). Using Eq. (3), the measured ion count rates for
beams (a) and (b), respectively, in Fig. 7 are then approximated
by

Y (I1) = V1,2P (I2) + V1,1P (I1) , (A1)

Y (I2) = V2,2P (I2) . (A2)

Since the quantities Y (I1) and Y (I2) are measured and V1,1,
V1,2, and V2,2 are known from the focal geometry, it is purely
a mathematical exercise to solve Eqs. (A1) and (A2) for P (I1)
and P (I2),

P (I1) = 1

V1,1

(
Y (I1) − V1,2

V2,2
Y (I2)

)
, (A3)

P (I2) = Y (I2)

V2,2
. (A4)

For the general case of N different laser peak intensities,
Eq. (3) produces a system of linear equations,

⎛
⎜⎜⎝

V1,1 V1,2 · · · V1,N

0 V2,2 · · · V2,N

... . . .
. . .

...
0 0 . . . VN,N

⎞
⎟⎟⎠

⎛
⎜⎜⎝

P (I1)
P (I2)

...
P (IN )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Y (I1)
Y (I2)

...
Y (IN )

⎞
⎟⎟⎠ ,

(A5)

or V̂ · P = Y , where V̂ denotes the differential volume matrix,
P is the probability array, and Y is the signal yield array. To

FIG. 7. (Color online) A one-dimensional illustration of Gaus-
sian beams showing the relationship between the volume elements
(V1,1,V1,2,V2,2) and their respective probabilities [P (I1) ,P (I2)].
Regions within the beams with an ionization probability of P (I1)
are colored blue, whereas, regions with probability P (I2) are colored
red. Beam (a) is represented by Eq. (A2). The differential volume of
the red region is denoted by V2,2. Beam (b) is represented by Eq. (A1).
Here the differential volume of the red region is denoted by V1,2, and
that of the blue region is denoted by V1,1. The gold outer wings of
each beam are neglected in Eqs. (A1) and (A2).

find the probability P , we multiply both sides of Eq. (A5) by
the inverse volume matrix V̂ −1 to obtain

P = V̂ −1 · Y . (A6)

In general, the volume matrix encodes the experimental
setup into the deconvolution algorithm. It is implicitly de-
pendent on the optical elements in the beam path. Therefore,
by computing the appropriate volume matrix elements, the
algorithm Eq. (A6) can be used to deconvolve data from
experiments with a variety of laser beam modes (Gaussian,
Laguerre, Gaussian, Hermite-Gaussian, Bessel, etc., . . . ).

APPENDIX B: PROCEDURE FOR THE
REGULARIZATION ALGORITHM

In practice, the inversion of Eq. (A6) is notoriously unstable,
and it is common to remove statistical outliers from the data to
improve the algorithm’s stability. Here we employ an L2 norm
modification of the variation minimization algorithm proposed
by Le et al. [13] and expanded by Chartrand and Wohlberg
[14]. Generally, L2 regularization involves the minimization of
the dot product |A|2 of a vector A, whereas, L1 regularization
refers to the minimization of the absolute value |A|. For
convenience of notation, we will represent the ionization yields
and probabilities in the following way:

Yn ≡ Y (In) , Ps ≡ P (Is) . (B1)

From Bayes’ theorem, the probability of having a statistical
mean Ȳn given that we measure a yield Yn can be expressed as

Prob(Ȳn|Yn) = Prob(Yn|Ȳn)Prob(Ȳn)

Prob(Yn)
, (B2)

where Prob(B) is the probability of obtaining B and Prob(A|B)
is the probability of obtaining A given that we know B.
Since Yn, the measurement, cannot be changed, maximizing
Prob(Ȳn|Yn) requires ascertaining the appropriate Ȳn. Max-
imizing Prob(Ȳn|Yn) is, therefore, equivalent to maximizing
Prob(Yn|Ȳn)Prob(Ȳn). The data Yn are measured over a fixed
interval of time satisfying Poisson statistics. Therefore, the
probability of measuring Yn, provided a mean Ȳn, is given by
the Poisson probability mass function,

Prob(Yn|Ȳn) = e−Ȳn Ȳ Yn
n

Yn!
. (B3)

The regularization of the data typically is introduced
through the probability Prob(Ȳn). However, it is more useful
to regularize the output of the deconvolution algorithm P̄
since this is where the propagated error tends to be the
largest. Consequently, the function Prob(Ȳn) is replaced by
a suitable function Prob(P̄n). This function must be chosen
based upon experimental constraints. Assuming the derivative
of the ionization probability to be continuous, we chose

Prob(P̄n) = exp ( − β(∇n,s P̄s)
2), (B4)

where the local derivative,

|∇n,s P̄s | ≈
∣∣∣∣∂P̄

∂I

∣∣∣∣
n

(B5)

is with respect to the array variable I , and β is the
regularization parameter. The choice of β is discussed in
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Sec. IV. Since we ultimately seek the statistical mean of the
ionization probability P̄ , we eliminate the yield mean by the
substitution,

Ȳ → V̂ P̄ . (B6)

We can now maximize Eq. (B2) by minimizing the negative
logarithm,

− ln (Prob(Yn|Ȳn)Prob(P̄n))

= Ȳn − Yn ln(Ȳn) + ln(Yn!) + β(Ȳn)2

= Vn,sP̄s − Yn ln(Vn,sP̄s) + ln(Yn!) + β(∇n,s P̄s)
2.

(B7)

Equation (B7) can be viewed as a mechanical action from
which we derive the Euler-Lagrange equation with respect to
the variables P̄s and ∇n,s P̄s , resulting in

V̂ T V̂ P̄ − Y

|V̂ P̄ | − 2β∇̂2 P̄ = 0. (B8)

It should be noted that, in Eq. (B8), M̂ ≡ ∣∣V̂ P̄
∣∣ is a diagonal

matrix whose elements are as follows:

Mn,m =
{
Vn,sP̄s → n = m,

0 → n 	= m.
(B9)

This M̂ has the general effect of rescaling the regularization
parameter β (I n) = βMn,n to accommodate the variation in
the Poisson noise. Because M̂ is a function of P̄ (and P̄
is the desired quantity), M̂ will have to be approximated
through an iterative process. If the experimental data are taken
such that the measurement approximates the statistical mean

Y ≈ Ȳ =V̂ P̄ , we can approximate Eq. (B9) by setting the
initial value M̂0 = |Y | and solving for the probability P̄ i ,

P̄ i = (V̂ T V̂ − 2βM̂i∇̂2)−1V̂ T Y , (B10)

M̂i+1 = |V̂ P̄ i |. (B11)

Equations (B10) and (B11) are iterated until convergence
(| P̄ i − P̄ i+1| < | P̄ i+1|/104) is obtained for every element of
the vector P̄ i+1. For our data, only two iterations were needed
for convergence. In Eq. (B11), the initial M̂i (i = 0) is the
diagonal matrix of the measured yields,

|Y | =

⎛
⎜⎜⎜⎜⎝

|Y1| 0 · · · 0

0 |Y2| 0
...

... 0
. . . 0

0 0 0 |Yn|

⎞
⎟⎟⎟⎟⎠ , (B12)

and ∇̂2 is the second derivative matrix. We found the second
derivative by multiplying two first derivative matrices defined
by

∇̂ = 1

�I

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0
0 1 −1 0 · · ·

· · · 0 1
. . . 0

· · · · · · 0
. . . −1

0 · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B13)

In general, the intensity spacing �I = Ii − Ii+1 is not
constant and should be calculated for each row of the derivative
matrix. We refer to the initialization step along with the
iteration of Eqs. (B10) and (B11) and the convergence criterion
as the DDAR algorithm.
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