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The ionization of xenon atoms subjected to 42fs, 800nm pulses of radiation from a Ti:Sapphire
laser was investigated. In our experiments a maximum laser intensity of ∼ 2 × 1015W/cm2 was
used. Xenon ions were measured using a time-of-flight ion mass spectrometer having an entrance
slit with dimensions of 12µm × 400µm. The observed yields Xen+(n = 1 − 7) were partially free
of spatial averaging. The ion yields showed sequential and nonsequential multiple ionization and
dip structures following saturation. To investigate the dip structures and to perform a comparison
between experimental and simulated data, with the goal of clarifying the effects of residual spatial
averaging, we derived a hybrid analytical-numerical solution for the integration kernel in restricted
focal geometries. We simulated xenon ionization using Ammosov-Delone-Krainov and Perelomov-
Popov-Terent’ev theories and obtained agreement with the results of observations. Since a large
number of experiments suffer from spatial averaging, the results presented are important to correctly
interpret experimental data by taking into account spatial averaging.

I. INTRODUCTION

Over the past few decades, research involving the in-
teraction of intense and ultrashort pulsed radiation with
matter has become common place and made possible
by the advent of chirped-pulse amplification (CPA) [1].
Pulses of radiation generated in a CPA laser have a num-
ber of useful properties such as high achievable peak in-
tensities which provide the high optical pumping rates
necessary for multiphoton processes as described by low-
est order perturbation theory (LOPT) [2], a broadband
spectrum having applications in spectroscopy [3], and the
production of short pulses used in pump-probe exper-
iments to investigate ultrafast phenomena on the time
scale of molecular vibrations [4] and on the time scale
of electron dynamics [5]. In the quantitative analysis of
the products of laser-matter interactions, a versatile in-
strument known as a time-of-flight ion mass spectrometer
can be used [6]. In these types of experiments, an intense
laser beam is focused into a vacuum chamber where it is
allowed to interact with chosen target particles. Prod-
uct ions can then be directed towards a detector such
as a multichannel plate (MCP), delay line detector, or
Faraday cup for quantification using ion optics.
It was known early on that the production of ions us-

ing laser beams resulted in an averaging effect that leads
to an I3/2 dependence in measured yield curves [7]. This
unwanted experimental artifact manifests itself in mea-
suring incorrect relative ion yields between charge states
and fragment ions [8], and averaging over structures in in-
tensity dependent ionization yields [9–11]. This process
is known in the literature as spatial or intensity aver-
aging, or volumetric weighting [12]. Because of spatial
averaging, one does not measure the ionization probabil-
ity but an averaged result. For researchers in this area,
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spatial averaging frustrates comparison of experimental
data with theoretical results, and many instances can be
found in the literature were theoretical results are artifi-
cially averaged for comparison [13, 14]. Averaging prob-
abilities tend to make all intensity-dependent ion yield
curves similar, and interpretation becomes generic. With
the exception of dominating processes such as the nonse-
quential double ionization of helium, only characteristics
such as the order of the multiphoton process and satu-
ration intensity may be determined while the remaining
photophysical phenomena are masked.

The potential benefits of intensity-resolved measure-
ments have fueled the development of a plethora of tech-
niques designed specifically for unraveling the masking ef-
fects of spatial averaging. These methods can be divided
into three groups: pure theoretical [10, 15], pure exper-
imental [6, 16] and combined approaches [8, 12, 17, 18].
Pure theoretical approaches involve mathematical algo-
rithms used to deconvolve experimental data; for in-
stance, researchers working with ion beams typically em-
ploy the Abel transformation which allows the Newton
sphere to be retrieved. More recently deconvolution of
photoelectron yields, in which all electrons in the focus
were collected, were performed by a variational approach.
As of yet, no purely experimental method has been devel-
oped to measure ionization probabilities in above thresh-
old ionization (ATI). However considering ion detection
currently, two purely experimental techniques exist that
have demonstrated successful results. The first is the
photodynamic test tube pioneered by Strohaber [6], and
the second is the ion microscope [16]. Finally, mixed
methods include intensity-selective scanning ISS [8, 12]
and intensity difference scanning IDS [17, 18]. With the
exception of the pure theoretical approach many experi-
ments rely on some type of aperture for data collection.
This work will provide insight into the effects of volu-
metric weighting on data, and a complete understanding
of the role that volumetric weighting plays in the inter-
action of radiation with matter in experiments having
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restricted focal geometry.
Due to the large number of possible experimental con-

figurations, their effects on volumetric weighting of data
will be considered. Finally, a method with the intent to
compare data measured for different experimental con-
figurations is developed. This analysis is largely fuelled
by the observation of anomalous structures in measured
xenon yields. It has three immediate consequences for
research in ionization in strong fields: (i) the ability to
correctly interpret experimental data, (ii) to properly
spatially average theoretical ionization probabilities for
comparison with measured data and (iii) to deconvolve
measured data obtained from various focal and slit ge-
ometries.

II. EXPERIMENTAL RESULTS ON THE

IONIZATION OF XENON

In our ionization experiments with xenon, ultrashort
pulses (42 fs) were produces by a Spectra-Physics Spit-
fire CPA laser having a repetition rate of 1kHz. The
radiation had a center wavelength of 800 nm and a pulse
energy of 2.5 mJ. Radiation was focused into an ioniza-
tion chamber by a lens having a nominal focal length of
21 cm. The focused radiation had a minimum beam size
of w0 = 35.5µm at the 1/e2 level, and a Rayleigh range
of z0 ≈ 4.9 mm. A detailed description of the time-
of-flight apparatus is given in [6, 9]. In brief, ions are
created within a parallel plate capacitor through pho-
toionization. The produced ions are accelerated into a
flight tube where they are subsequently detected by an
MCP. By using a combination of spatial (slit) and tempo-
ral (time slicing) filtering, ions can be selectively detected
from a variable but limited three-dimensional spatial re-
gion within the focus.
The backing pressures of both the ionization chamber

and flight tube were ∼ 5 × 10−9 mbar. Xenon gas hav-
ing a purity of 99.999% was admitted into the ionization
chamber using a precision leak valve (MDC, ULV-150)
to a pressure of ∼ 2× 10−7 mbar. Data was recorded us-
ing a FAST ComTec counting card (P7886 2-GHz) hav-
ing a time resolution of 0.5 ns. Data acquisition was
automated with LabVIEW code, which measured and
adjusted the laser power and recorded experimental pa-
rameters and the spectrum. The laser power was at-
tenuated by adjusting a half waveplate positioned before
the compressor. For each laser power, the spectrum was
averaged over 150,000 laser pulses resulting in a total
maximum runtime of 5hrs. The laser powers used in
our experiments corresponded to intensities ranging be-
tween 4.7× 1013W/cm2 and 2.3× 1015W/cm2. Figure 1
shows the intensity-dependent ionization yields for xenon
ions Xen+ (n = 1 − 7) measured with the time of flight
apparatus. The data was taken using a slit with dimen-
sions of 400µm along the Rayleigh range and 12µm in
the transverse directions. The remaining dimension of
the detection volume was unrestricted (no time slicing).

FIG. 1. Ionization yields of xenon using 50fs pulses of radi-
ations centered at 800nm. (a) The yields curves are those of
Xen+, where n = 1 − 7. Charges states show clear evidence
of nonsequential multiple ionization. Dips in the yield curves
following saturation can be seen for charge states 2, 3 and 4.
(b) Same as (a) except yields have been vertically displaced
by ×a, ×b, ×c, and ×d for Xe4+, Xe3+, Xe2+ and Xe1+ re-
spectively. Vertical dotted lines indicate saturation intensities
determined by OBTI, see text.

The data shown in Fig. 1 is indicative of an sequen-
tial ionization process, but also shows contributions from
nonsequential multiple ionization. The classical descrip-
tion of over the barrier ionization (OBTI) predicts satu-
ration intensities Is as the intensity required to lower the
field-induced barrier to the energy of the ground state
Is = 4 × 109(IE4/Z2). Here IE is the ionization energy
and Z is the final charge state. Using IEs of [12.13, 20.98
31.05, 42.20, 54.10, 66.70]eV, obtained from the NIST
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database [19], the saturation intensities are found to be
[0.87, 1.94, 4.13, 7.93, 13.71, 22.00]×1014 W/cm2. These
values are shown by vertical dotted lines in Fig. 1(b).
Around ∼ 1014W/cm2 a shoulder structure can be seen
in the Xe2+ ion yields. This shoulder structure saturates
near the expected saturation intensity of the respective
previous charge state Xe1+. Other charge states show in-
dications of nonsequential processes, but we have pointed
out the most noticeable one. The data also show a new
structure that has not been previously observed. Follow-
ing saturation of the ion yields of charge states 2, 3 and
4, a dip appears Fig. 1(b). These dips occur near the
saturation of the following ionic state. It is suspected
that the dips are, therefore, formed by the higher non-
linear processes of the subsequent charge states followed
by an increase due to spatial averaging and may indi-
cate that the dips are due to a genuine physical process.
Since, in general, reducing the effects of spatial averaging
(i.e., by restricting the focal volume) produces data that
is expected to be more representative of true ionization
probabilities, further investigation is required.

To investigate the origin of these dips, we sim-
ulated ionization yield curves using ionization rates
calculated with the Ammosov-Delone-Krainov (ADK)
and Perelomov-Popov-Terent’ev (PPT) theories [20, 21].
While the data in Fig. 1 is to a large degree free of spatial
averaging, there remains a residual amount; therefore, to
compare with experimental data the theoretical results
must be spatially averaged with the volumetric weight-
ing of the detection volume used in the experiment. Pre-
viously, an attempt to approximate the kernel [22] for a
restricted focal volume was made; however, the results
were at best qualitative and thus not suitable for accu-
rate calculations. For these reasons, we have derived a
hybrid analytical-numerical solution for the integration
kernel and investigated its characteristics and its effects
on ionization probabilities. To the best of our knowledge,
the kernel for an arbitrary restricted focal geometry has
not been presented in the literature and because of its im-
portance in numerous types of experiments, we present
results that are general and can be directly applied to a
variety of experimental configurations where volumetric
weighting is known to obscure results.

III. VOLUMETRIC WEIGHTING FACTORS

When measuring ionization yields in an experiment,
the collected ions originate from different locations in the
focus, and because the intensity distribution is not uni-
form (typically taken to be Gaussian), the collected ions
are those produced over a broad range of intensities. The
ion yields S(I0) in an experiment at a peak intensity of
I0 is the sum of the products of the probability at a local
intensity and the volume of the iso-intensity shell at that
intensity. This can be written as the integrated product

yield,

S(I0) ∝
∫ I0

0

P (I)

∣

∣

∣

∣

∂V

∂I

∣

∣

∣

∣

dI. (1)

Here P (I) is the actual ionization probability and is the
sought after quantity, and K(I, I0) = ∂V/∂I is the volu-
metric weighting factor or integration kernel, a quantity
that depends on both the local and peak intensities. The
kernel is described completely by the focal geometry. In
this work the kernel is taken to be that due to the Gaus-
sian intensity profile,

I(z) = I0
w2

0

w2(z)
exp

(

− 2r2

w2(z)

)

. (2)

Here w0 is the waist, w(z) = w0(1+z2/z20) is the spot size,
and z0 is the Rayleigh range of the beam. At a specified
intensity I, the radius of the corresponding iso-intensity
shell as a function of z can be found from Eq. (2),

r(z) = w(z)

√

1

2
ln

∣

∣

∣

∣

I0w2
0

Iw2(z)

∣

∣

∣

∣

. (3)

This expression has the restriction that the natural log
under the radical must be greater than or equal to zero,
which implies that the natural log argument is greater
than one, I0w

2
0 ≥ Iw2(z). This requirement gives the

extent of the iso-intensity shells along the z-direction
z± = ±z0

√

I0/I − 1. The volume is then found by inte-
gration

V3D =

∫∫∫

dV = π

∫ z+

z
−

r2(z′)dz′. (4)

Making use of Eq. (3) and integrating the last expression
in Eq. (4) gives,

V3D = z0w
2
0

π

9

[

(

I0
I

− 1

)3/2

+ 6

(

I0
I

− 1

)1/2

− 6 arctan

(

√

I0
I

− 1

)

]

. (5)

Equation. (5) is the well-known result for the volume
within the iso-intensity shells in a Gaussian focus [23].
By restricting the focal volume along the z-direction,

usually accomplished by a slit (ISS approach), the volume
for this restricted geometry is found by the last integral
of Eq. (4) with integration bounds of z′ = z − c/2 and
z′ = z + c/2,

V FV z
3D = z0w

2
0

π

18

[

3
z

z0

(

3 +
z2

z20

)

ln

(

I0
I

z20
z20 + z2

)

+ 2
z

z0

(

6 +
z2

z20

)

− 12 arctan

(

z

z0

)

]z+c/2

z−c/2
. (6)

Here c is the length of the slit in the z-direction. For
the given volumes in Eq. (5) and Eq. (6), the associated
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kernels found by taking the derivative with respect to
intensity are,

KFV
2D (I, I0) = π

∂r2

∂I
= π

w2
0

2I
, (7a)

KRV z
3D = c

(

1 +
z2

z20
+

c2

12z20

)

KFV
2D , (7b)

KFV
3D = z0

2

3I

√

I0
I

− 1

(

I0
I

+ 2

)

KFV
2D . (7c)

Equation (7a) is the kernel of a 2D slice of zero thickness
taken perpendicular through the beam V2D =

∫∫

dA =
πr2 and is full-view in 2D. The kernel in Eq. (7b) repre-
sents a slice of finite extent taken in the transverse direc-
tion and centered at position z. This kernel is different
than that given in [8, 12]. In [12] the kernel is entirely
due to a 2D configuration and this small detail has no-
ticeable effects when computing the kernel in a restricted
geometry. Equation (7c) is the full-view kernel in 3D.

IV. VOLUMETRIC WEIGHTING IN

RESTRICTED FOCAL GEOMETRIES

In many experiments, a rectangular slit is used to re-
strict the volume of the focus exposed to the detector.
In these cases the volumetric weighting factors are more
complex than those given by the analytical expressions
in Eq. (7a) and Eq. (7c). To obtain the kernel associated
with a 3D detection volume within the focus, we integrate
dV in a restricted space over the bounds of a rectangular
parallelepiped detection volume. The sides of our de-
tection volume have lengths of a and b in the transverse
dimension, and length c in the longitudinal direction. An
analytical solution to this integral in terms of elementary
functions does not exist, and for this reason we have de-
veloped a hybrid analytical-numerical solution obtained
by adding up transverse slices of exact solutions along the
propagation direction. To do this, three different cases
must be considered to determine the volume within an
iso-intensity shell from a restricted volume. These three
cases are illustrated in Fig. 2 with a detection volume of
dimensions b(vertical) and a (horizontal).
In Fig. 2(a), iso-intensity shells (circle) with r < b/2

are without restriction, in Fig. 2(b) the radius of the
iso-intensity shell is greater than b/2 but less than a/2,
in Fig. 2(c) the dection volume is completely enclosed in
the iso-intensity shell. Fig. 2(d) is a quadrant view of an
intermediate case similar to that shown in Fig. 2(b). For
shells completely enclosed [Fig. 2(a)], the volume within
the 2D shells is,

V
(1)
2D = πr2. (8)

where r is given in Eq. (2). In Fig. 2(c), the shell radius

is larger than half the diagonal length r ≥
√
a2 + b2/2,

and in this case the volume of the iso-intensity shell is

equal to the volume of the detection volume V
(3)
2D = ab.

FIG. 2. Two dimensional detection volume and iso-intensity
shells. (a) Iso-intensity shell (circle) with diameter smaller
than the smallest length of the detection volume (rectangle).
(b) iso-intensity shell with diameter larger than one side of the
detection volume (intermediate case). (c) isointensity shell
with a radius larger than half of the diagonal length of the
detection volume. (d) Quadrant view of a intermediate case
similar to that in (b) with the detected ions coming from the
shaded region. The detection volume is the volume in the
iso-intensity shell minus parts A and B.

In the case where the radius of the iso-intensity shell
is (a/2 or b/2) ≤ r ≤

√
a2 + b2/2, the volume is more

complicated; however, an exact analytical expression can
be derived. In Fig. 2(d) a quarter of the detection volume
(shaded region) is shown. The detection volume is the
volume within the iso-intensity shell (circle) minus four

times the volume of parts A and B or V
(2)
2D = πr2 −

4VA − 4VB. Part B is the region bounded by the curves
y =

√
r2 − x2 and y = 0, and its volume is found by

integrating from x = a/2 to x = r. Similar analysis
can be made for region A and results in the following
volumes:

VA =
1

4

[

πr2 − a

√

r2 − a2

4
− 2r2 arcsin

( a

2r

)

]

, (9a)

VB =
1

4

[

πr2 − b

√

r2 − b2

4
− 2r2 arcsin

(

b

2r

)

]

. (9b)

The total restricted volume is therefore

V
(2)
2D = −πr2 + a

√

r2 − a2

4
+ b

√

r2 − b2

4
+ 2r2×

[

arcsin
( a

2r

)

+ arcsin

(

b

2r

)]

. (10)

The volumes in Eq.(8) and Eq.(10) together with V
(3)
2D =

ab are plotted (as a function of radius) separately in Fig
3 as the solid blue (region I), red (region II) and black
(region III) curves respectively. The dimensions used for
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FIG. 3. Detection volume V (r) as a function of radius (solid
curve), and derivative of the volume ∂I/∂r (dashed curve).
(a) Volume and its derivative with a = b = 1, and (b) volume
and derivative with a = 1 and b = 0.75. Vertical dotted lines
separate regions corresponding to different types of restricted
volumes.

the volume in Fig. 3(a) are a = 1 and b = 1, and those
in Figs. 3(b) are a = 1 and b = 0.75. In Figs. 3(a) and
(b), the volume (solid blue curve) increases quadratically

V
(1)
2D = πr2 until r = a/2 in Fig. 3(a) and r = b/2 in Fig.

3(b) where the solution of Eq. (10) is plotted (solid red
curve). For shells with radii equal to or larger than half

the diagonal of the detection volume r ≥
√
a2 + b2/2, the

volume is constant V = ab (black curve). The derivative
∂V/∂I is plotted along with the volume to check for con-
sistency and correctness. The kernels K(I, I0) = ∂V/∂I
associated with these three volumes are,

K
(1)
2D = KFV

2D , (11a)

K
(2)
2D = KFV

2D

[

2

π
arcsin

( a

2r

)

+
2

π
arcsin

(

b

2r

)

− 1

]

,

(11b)

K
(3)
2D = 0. (11c)

When r is equal to or less than the smallest side of the

box, the real part of K
(2)
2D is equal to K

(1)
2D, and when r is

greater than the diagonal length of the detection volume

r ≥
√

(a/2)2 + (b/2)2 the kernel K
(2)
2D becomes negative

and by setting the negative values to zero, the kernelK
(2)
2D

is equal to K
(3)
2D . These conditions mean that Eq. (12)

can be rewritten as a single expression,

KRV
2D = KFV

2D ℜ
[

2

π
arcsin

( a

2r

)

+
2

π
arcsin

(

b

2r

)

− 1

]

HC ,

(12)
whereHC = H(I−IC) is the Heaviside step function with
IC as the intensity at which the function KRV

2D changes
sign between positive and negative. This occurs when
the detection volume is completely within an iso-intensity
shell and its derivative is therefore zero.

FIG. 4. Theoretically calculated kernels for restricted focal
geometries KRV

2D . (a) Detection volume dimensions a = b =
10w0 and c = 10z0; (b) a = b = 10w0 and c = z0; (c) a =
b = w0 and c = z0; and (d) a = w0, b = 1.5w0 and c = z0.
In (a) the dimensions of the detection volume is larger than
the iso-intensity shells and KRV

3D ≈ KFV
3D for the plot limits

shown. Clipping the iso-intensity shells in the z-direction,
KRV

3D , within a certain range, will be equal to KRV z
3D . For

intensities lower than IC2, the kernel KRV
3D can take different

forms depending on the values of a and b.

For the 3D case, we find the restricted volume by a
hybrid analytical-numerical solution where the last di-
mension is numerically integrated over and from this the
kernel LRV

3D can be found. In other words, the 3D re-
stricted kernel KRV

3D is constructed by adding exact two-
dimensional volume slices from Eq. (12) in which each 2D
volume has a width of ∆z determined by the iso-intensity
shells. This can symbolically be written as,

KRV
3D =

∑

KRV
2D ∆z. (13)

Equation (13) is one of the main results of this work
and gives the volumetric weighting factors for a detec-
tion scheme with a restricted volume. For simplicity, we
have shown Eq. (15) as a Riemann sum; however, in our
calculations we employed Simpson’s rule and equidistant
steps in the z-direction.
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V. RESULTS

Figure 4 shows the result of calculations using Eq. (13)
for different detection volumes. In Fig. 4(a), the detec-
tion volume has the dimensions a = 10w0, b = 10w0 and
c = 10z0. This data (dashed blue curve) was plotted
along with the exact result (solid green curve) from Eq.
(7c), and the two curves lie on top of one another (for
the plot limits shown) demonstrating the accuracy of the
calculation. At the peak intensity I = I0, the kernel
goes to zero, as it must for all possible slit geometries. If
KFV

3D did not go to zero here, then the calculations would
result in incorrect interpretation of further analysis. In
Fig 4(b), the slit values have been taken to be a = 10w0,
b = 10w0 and c = z0. It can be seen that the KFV

3D

(green) and KRV z
3D (solid red curve) curves cross at an

intensity of I = 0.8I0. Here the calculated kernel KRV
3D

(dashed blue curve) is plotted along withKFV
3D andKRV z

3D
and follows KFV

3D until an intensity of I = 0.8I0, after-
ward following KRV z

3D (red curve) for the lower intensities.
In Fig. 4(c), the dimensions of the detection volume are
a = w0, b = w0 and c = z0. This situation is similar
to that shown in Fig. 4(b), except that the calculated
kernel deviates from KRV z

3D at an intensity of I = 0.61I0
and goes to zero at I = 0.36I0. Lastly, in Fig. 4(d), the
slit dimensions are a = w0, b = 1.5w0 and c = z0. This
is similar to the data shown in Fig. 4(c), except that the
curve after I = 0.61I0 peaks again around I = 0.32I0 and
then goes to zero at I = 0.22I0. This analysis shows that
the results are in excellent agreement with the known
analytical results of Eq. 7(b) and Eq. 7(c) and provides
assurance of similar accuracy for the remaining portion
of the curves. The calculated kernel KRV

3D can be further
quantified by determining critical intensities at which the
kernel changes geometries as previously discussed. This
is the topic of the next section.

VI. CRITICAL INTENSITIES

In Fig. 4(d), four critical intensities are shown. The
dimensions used for the calculated kernel were a = w0,
b = 1.5w0 and c = z0. The first critical intensity occurs
when the kernel changes from KFV

3D to KRV z
3D . The ker-

nel KFV
3D came about from integration over all space (no

restriction) and KRV z
3D was calculated by restricting inte-

gration along the z-axis. This suggests that the change
in geometry of the kernel is due to clipping of the iso-
intensity shells along the z-direction. To quantify this,
the local on-axis intensity I0L = I0w

2
0/w

2 is calculated
at the position z = c. The intensity found in this way is
IC1 = I0/(1 + c2/z20), and for the detection volume used
in Fig. 4(d) it is IC1 = 0.81I0. This is the intensity in
which the kernel KRV

3D changes from that of Eq. (7b) to
(7c) due to clipping of the iso-intensity shells in the z
direction.
The next critical intensities occur when the largest ra-

dius r(z) of a shell meets the transverse dimension of

FIG. 5. Isointensity contours and detection volume. The
black lines are iso-intensity contours with heights ranging
from 0.1I0 to 0.9I0 in increments of 0.1I0. These contours are
either elliptically-shaped with a single maximum at z = 0, or
peanut-shaped with two maxima z = ±

√

I0e−1/I − 1. The
intensity that separates the elliptical shapes from the peanut
shapes is I = I0e

−1 and is shown by the dotted line. The small
box represents a detection volume with sides a = b = w0, and
c = z0. The larger box is the same as the small box but
rotated by 45o and projected onto the yz-plane.

the detection volume. The critical intensity at 0.61I0 oc-
curs because the largest radius of the iso-intensity shell
is equal to half the dimension of the smallest transverse
length (in this case a) of the detection volume. Plug-
ging r = a/2 and z = 0 into Eq. (2), the critical inten-
sity is found to be IC2 = I0 exp(−a2/w2

0/2) = 0.6065I0.
The same analysis can be applied to the largest trans-
verse slit dimension b = 1.5w0 and gives an intensity of
IC3 = I0 exp(−b2/w2

0/2) = 0.3247I0. The largest trans-
verse radius r(z) occurs when the derivative is equal to
zero, dr/dz = 0. In this way the largest radius occurs

at the positions z = 0 and z = ±
√

I0e−1/I − 1. This
last expression is real for intensities I ≤ I0e

−1, and the
isointensity shells take the peanut shapes shown in Fig
6. When I ≥ I0e

−1 the term under the radical is less
than zero and all iso-intensity shells have an elliptical
shape with a maximum at z = 0. The boundary between
the peanut and elliptically shaped iso-intensity shells is
shown by the dotted contour in Fig. 5.
Lastly at the lower intensities, isointensity shells can

be found such that the detection volume is completely
enclosed within it. The highest intensity for which this
situation occurs is when the radius of the shell is at the
corner of the detection volume at z = c. To find this
intensity, the bracketed expression in Eq. (12) is set to
zero, which is motivated by the fact that this results in
KRV

3D = 0. This procedure gives the intensity

IC4 = I0
1

1 + c2/z20
exp

(

−1

2

a2 + b2

1 + c2/z20

)

, (14)

which for our example gives IC4 = 0.2180I0.
In conclusion of this section, while one of the goals of

this work was to analyze the origin of the dips in the mea-
sured xenon data, our previous work [10] suggested that
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if a kernel could be found for a restricted focal geometry,
then it may be possible to remove residual spatial averag-
ing. That method employed a power series expansion of
both the experimental yield S(I0) and probability P (I)
data,

S(I0) = Im−1
0

∑

k

AkI
k
0 , (15a)

P (I) = Im−1
∑

k

Ak

Gk
Ik. (15b)

Here k is the expansion index, m can be taken to be the
lowest possitive integer value that results in a solution to
the Volterra equation, Eq. (1) (for 1D and 2D geometries
m = 1 and for 3D geometries m = 3 ), Ak are expansion
coefficients of the yield S(I0) and the Gk are geometric
factors determined by the integrated kernel,

Gk ∝
∫ 1

0

KND(ξ)ξk+m−1dξ. (16)

In [10], the kernelsK(ξ) were given for the 1D, 2D and 3D
cases; however, in practice the kernels are all 3D and for
the kernels given in Eq. (7b) and Eq. (7c) the geometric
factors are

GFV
k = πz0w

2
0N

√
π

3

[

Γ(k +m− 5/2)

2Γ(k +m− 1)
+

Γ(k +m− 3/2)

Γ(k +m)

]

,

(17a)

GFV z
k = πz0w

2
0N

1

3

(

c2

z20
+ 3

)

1

k +m− 1
, (17b)

where N is the particle density and Γ is the gamma
function. To perform the deconvolution, the spatially av-
eraged experimental data S(I0) is expanded in a power
series according to Eq. (15a) to obtain the expansion
coefficients Ak. The geometric factors Gk are then de-
termined using Eq (16) with the appropriate volumetric
weighting factor K. Equation (17) are analytical expres-
sions for the Gk in three dimensional geometries. This
work, however, has provided a kernel for restricted fo-
cal geometries Eq. (13) and once calculated using the
method outlined here, it can be integrated in Eq. (16) to
find the geometric factors. We also note that the kernel
KRV

3D may contain parts fromKFV
3D andKRV z

3D which have
known solution to Eq. (16). Once the geometric factors
are determined, they can be used along with the Ak in
Eq. (15b) to recover the ionization probability P (I) in
a power series expansion using the new expansion coeffi-
cients Ak/Gk.

VII. COMPARISON WITH EXPERIMENTAL

DATA

In this section we investigate the effects of spatial av-
eraging on measured ion yields curves. To do this, we
calculated ionization rates W using ADK and PPT theo-
ries to generate ionization curves of Xe. Figures 6(a), and

FIG. 6. Ionization yields of Xen+ (n = 1 − 7). (a) Ioniza-
tion probabilities calculated using ADK theory (solid curves),
and measured ionization yields using a detection volume of di-
mensions a = 12µm by b = ∞ by c = 400µm(squares). (b)
Same as (a) except the probability was calculated using PPT
theory.

6(b) show the results of the simulated ion yields of xenon
up to the seventh charge state. The simulated yields have
only a contribution from sequential ionization and show
agreement with the data only near saturation. In Fig.
6(a), the measured Xe2+ deviates from the the calculated
yield at an intensity of ∼ 1014W/cm2. This intensity
corresponds with the saturation intensity of Xe1+ and
for this reason the Xe1+ yields have been shifted up by a
factor of 3 times. For comparison with the experimental
yields, the simulated yields were spatially averaged using
slit dimensions of a = 12µm, b = ∞ in the transverse
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FIG. 7. Spatial averaged nonsequential ionization yields of
Xen+ (n = 1−7). (a) Simulated nonsequential yields spatially
averaged using a detection volume with dimensions a = ∞ by
b = ∞ by c = 400µm. (b) Simulated nonsequential yields spa-
tially averaged using our experimental detection volume with
dimension of a = 12µm by b = ∞ by c = 400µm. The sim-
ulated nonsequential portion of a particular charge state was
found by weighting the ADK rates used for previous charge
states (see text).

dimension and c = 400µm along the propagation direc-
tion. The simulated averaged yields decrease following
saturation but do not increase afterwards as seen in the
experiment data.

For better comparison with the data, nonsequen-
tial ionization probabilities were simulated by weighting

TABLE I. Coefficients of αi,j of the NS ionization of xenon

j

i 1 2 3 4 5 6 7

0 1 0.0001 0.000045 — — — —
1 1 0.03 0.0035 0.0004 — —
2 1 0.065 0.006 0.003 0.0003
3 1 0.08 0.015 0.0009
4 1 0.04 0.0068
5 1 0.025
6 1

ADK rates of previous charge states according to,

dNn

dt
=

n−1
∑

j=0

αj,nW
ADK
j,n Nj −

∑

k=n+1

αn,kW
ADK
n,k Nn. (18)

Here Nn is the poplution of the nth charge state i.e., N0

is the population of the neutral atoms, the Wi,j are the
sequential ionization rates determined by ADK, and the
αi,j are the nonsequential ionization coefficients[23]. The
indices on αi,j and Wi,j reads from the ith charge state
to the jth charge state. For the neutral charge state,
the first sum in Eq. (18) is zero and the rate equa-
tion for the neutral population has the analytical solution
N0 = exp(−

∑

W0,kt). Higher order charge state popula-
tions were found by numeric integration. The nonsequen-
tial ionization coefficients were found by fitting the sim-
ulated yields to the experimentally obtained data. Their
values are shown in table I. When all coefficients are zero,
except those that are unity, the rate equations lead to
sequential ionization yields. The nonsequential yield are
shown in Fig. 7(a) and can be contrasted with those in
Fig. 6 in which the simulated yields were calculated in a
sequential manner. Since the experimental data is rela-
tively flat following saturation, we spatially averaged the
simulated probabilities using Eq. (7a) to achieve a better
fit. The simulated probabilities were than spatially aver-
aged using the dimensions of the detection volume used
in our experiment. This simulated data is plotted in Fig.
7(b). As in the case when ADK and PPT theories were
used a decrease following saturation can be seen, but does
not increase afterwards. Different slit geometries were in-
vestigated, however, complete agreement with the data
in Fig. 1 could not be found. Comparison of the results
with experiment suggests that the dips in the yield curves
may arise from residual spatial averaging.
Finally, we attempted to reconstructed the ionization

probabilities using Eqs. (15-17) with the kernel derived
in Eq. (13). The level of noise in the experimental data
was such that this technique failed to retrieve the prob-
ability; however, we developed a new technique in which
the ionization probability at a particular intensity I0 is
found from an initial guess. This initial guess was then
spatially averaged using Eq. (1) and Eq. (13), and the
difference between the simulated signal Y (I0) and the ac-
tual experimental signal S(I0) was calculated. Based on
this difference, a new guess for P (I0) was made. This
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procedure was repeated until a minimum distance was
reach between the experimental signal and the simulated
signal according to,

S(I0)− C

∫ I0

0

K(I0, I)P (I)dI ≤ βS(I0). (19)

Here the second term on the left is the simulated signal
Y (I0) with C as a proportionality constant in Eq. (1),
and β is a closeness parameter. In our simulations β
was taken to be equal to 10−4 of the experimental value
S(I0).

Figure 8 shows the results of this new deconvolution
procedure. The retrieved Xe charge states are as indi-
cated in Fig. 1. The solid black curve is the sum of
all charge state probabilities. For charge states up to
Xe5+, a decrease in probability is seen following satu-
ration as expected from a sequential ionization process.
The initial decrease in their probabilities are followed by
a region where the probabilities ”stabilize” before fur-
ther decreasing. This decrease and ”suppression” in the
retrieved ionization probabilities result in the dips ob-
served in the experimental yield curves. The origin of
this phenomenon is not known to us, but the structure
partially survives the masking effect of spatial averaging
in the restricted focal geometry. The integration kernel
in Eq. (13) assumes a Gaussian focal geometry and as
a result the deconvolution is strongly dependent on the
form of the focal geometry. While the retrieved ioniza-
tion probabilities may suffer from imprecise knowledge
of the focal intensity profile, we are convinced that the
results are consistent with the measured data for two
reasons. First, in a 2D detection scheme such as ISS,
the yield curves will always be monotonically increasing
functions. The fact that we observe a decrease following
saturation indications that our detection volume is more
restricted than that of a 2D detection volume. Secondly,
any increase in the yields following a decrease can only
occur if the probability stabilizes or increases. The struc-
tures in the yield curves are therefore consistent with the
retrieved probabilities.

VIII. CONCLUSIONS

Highly ionized xenon atoms were measured as a func-
tion of intensity up to the seventh charge state. Sequen-
tial as well as nonsequential ionization processes were ob-
served in the yields curves. A dip structure was observed
in some of the yield curves following saturation where the
following charge state has a significant yield. To investi-

gate the dips, we derived for the first time the integration
kernelKRV

3D for restricted focal geometries. These kernels
were used to spatially average simulated ion yields using
ADK and PPT theories, and the results partially sug-
gested that the dips may be due to residual spatial aver-
aging. The inclusion of nonsequential multiple ionization
had little effect on the spatially averaged curves following
saturation. Retrieved probabilities curves found using a

FIG. 8. Retrieved ionization probabilities of Xe charge states.
Each charge state is denoted as in Fig. 1. The solid black
curve is the sum of all charged states probabilities. For charge
states that have reached saturation, a decrease in the proba-
bility is observed. The retrieved data shows that the proba-
bilities do not contiuously decrease as expected by the contin-
uous increase in probability of the following charge state but
”stabilize” for some range of intensities before decreasing.

new deconvolution technique and the restricted kernel
indicate that the dips may be due to a genuine photo-
physical process.
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