The Relativistic Doppler Effect (con’ t)

Equations (2.32) and (2.33) can be combined into

one equation if we agree to use a + sign for 5
(+v/c) when the source and receiver are
approaching each other and a — sign for S (- v/c)
when they are receding. The final equation

becomes

fg Relativistic Doppler effect (2.34)
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Application of the Doppler shift in Astronomy
Detecting Extrasolar Planets

* Great effort is made to discover earth-like planets in
distant solar systems

e Various techniques to detect Exoplanets via:

— the additional redshift caused by the star’s motion around a
common center of gravity

— the induced change in position of its
star

— the dimming of the star’s brightness
during the transition of a planet

— the induced change of a another
planet’s orbit

Habitable Earth-like exoplanets?



Giant Magellan Telescope

IS a ground-based extremely large
telescope under construction. It will consist of
seven 8.4 m (27.6 ft) diameter primary
segments,t that will observe optical and near
infrared (320-25000 nm!2)) light, with the
resolving power of a 24.5 m (80.4 ft) primary
mirror and collecting area equivalent to a 22.0 m
(72.2 ft) one,l8l which is about 368 square
meters.[4 The telescope is expected to have a
resolving power 10 times greater than
the Hubble Space Telescope.



https://en.wikipedia.org/wiki/Extremely_large_telescope
https://en.wikipedia.org/wiki/Giant_Magellan_Telescope#cite_note-GMTCastsNewMirror-1
https://en.wikipedia.org/wiki/Giant_Magellan_Telescope#cite_note-requirements-2
https://en.wikipedia.org/wiki/Giant_Magellan_Telescope#cite_note-3
https://en.wikipedia.org/wiki/Giant_Magellan_Telescope#cite_note-design_optics-4
https://en.wikipedia.org/wiki/Hubble_Space_Telescope

StoRy of GoldiLocks & the 3 bears

Once upon a time, there was a little girl named Goldilocks. She went for a walk in the
forest. Pretty soon, she came upon a house. She knocked, and when no one answered, she

walked right in...

At the table in the kitchen, there were three bowls of porridge.
*“This porridge is too hot!”
*“This porridge is too cold!”
*“This porridge is just right!”

She also tried out each of the three chairs and three beds.
*Too big, Too small, Too hard, Too soft, and Just Right




RV search for exo - Planets

Doppler Shift due to
Stellar Wobble

Radial Velocity
Variations induced
by exo-planets

Unseen planet
e Bl emetll




Detecting Extra Solar Planets

As of aAugust 13, 2020 there are
4,201 exoplanets discovered

smallest planet detected so far:
5-Earth-mass

corresponding precision: 60 cm/s required

precision for an Earth-mass
object in an Earth-like orbit
around a Sun-like star:

5 cm/s (50 kHz)

long term stability over years




2.11: Relativistic Momentum

Because physicists believe that the conservation
of momentum is fundamental, we begin by
considering collisions where there do not exist

external forces and
dP/dt =F_,=0




Relativistic Momentum

Frank (fixed or stationary system) is at rest in system K holding a ball of
mass m. Mary (moving system) holds a similar ball in system K that is
moving in the x direction with velocity v with respect to system K.

System K’
according
to Mary

System K %
according :
to Frank I
i
|
|
|
|
|
I
|

() (b)



Relativistic Momentum

= |f we use the definition of momentum, the
momentum of the ball thrown by Frank is
entirely in the y direction:

pr = MUy

The change of momentum as observed by
Frank is

Ape = Apgy = —2muy




According to Mary (the Moving frame)

= Mary measures the initial velocity of her own
ball to be u”,, =0 and u’,, = -u,.

In order to determine the velocity of Mary’ s
ball as measured by Frank we use the
velocity transformation equations:

U v (we used velocity summation formula
Mx —

| uy
Uy, = —Ug \/1 —v* /¢’ “r " y|[1-(v/cu, |

with u,=0)




Relativistic Momentum

Before the collision, the momentum of Mary’ s ball as measured
by Frank (the Fixed frame) becomes

Before D = MV

27 2
Before Pyp = —Mid \/1 —v7/c (2.42)

For a perfectly elastic collision, the momentum after the collision is
After Dy, =My

After  p,, = +mu, J1=v? /¢ (2.43)

The change in momentum of Mary’ s ball according to Frank is

APy = APygy = 2mu0\/ 1-v*/c” (2.44)




Relativistic Momentum (con’ t)

= The conservation of linear momentum requires the
total change in momentum of the collision, Apg + Apy,
to be zero. The addition of Equations (2.40) and (2.44)
clearly does not give zero.

Apg = Apgy, = —2muy Apyy = ApMy = 2mu0\/1 -v*/¢?

=L inear momentum is not conserved If we use the
conventions for momentum from classical physics
even If we use the velocity transformation equations
from the special theory of relativity.

*There is no problem with the x direction, but there is a
problem with the y direction along the direction the ball
IS thrown In each system.




Relativistic Momentum

Rather than abandon the conservation of linear
momentum, let us look for a modification of the
definition of linear momentum that preserves both it

and Newton’ s second law.
To do so requires reexamining mass to conclude that:
dar

=M —
D o7

p= ymz—[ Relativistic momentum (2.48)

1
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\/1—u2/02




‘ With modified (relativistic) momentum

Now Apg + Apy, =0
and momentum conserved!

2m u,v1—v?/c? B
JI-[V2 +uf@—-v?) I c?]/ c?
2muv1-vi/c?  2my,
JA-V2 ) (A-urlc?)  J(@L-u?/c?)

ApMy —




Relativistic Momentum: two points of view

-physicists like to refer to the mass in Equation (2.48) as
the rest mass m, and call the term m = ym,, the relativistic
mass. In this manner the classical form of momentum,

p=mu, Is retained. The mass Is then imagined to increase
at high speeds.

-physicists prefer to keep the concept of mass as an
Invariant, intrinsic property of an object. We adopt this latter

approach and will use the term mass exclusively to mean
rest mass.




Behavior of relativistic momentum and classical momentum for v/c->1

Lincar momentum {(wre)

0 02 04 06 08 1.0 1.2
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2.11
#60

A particle initially has a speed of 0.5¢ At what speed
does its momentum increase by (a) 1%, (b) 10%,. (c]
1 00% ¢
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Relativistic Kinetic Energy

In classical mechanics; k = %mvz. What is the kinetic energy k in special relativity?
dP d myu

F=—=—(ym u)——

dt
W12= fﬁd§= kz_kl
1

Assume; k, = 0, that is particle starts from rest and ds = u dt

d ~ d -
w=K= fa(ymou)udt =m, fdta(yu)u=mo fud(yu)

By using integration by parts;

fxdy=xy — fydx ~x=uand y=yu

fud(yu) = yu? — fyudu
u

k =mofud(yu) = myyu? —mofyudu
0

k =myyu? — f
1__



Integral tables give below equation;

u
0
2
2 2 u
my,u + m,cC (1 —?) 5 5 5
K = — myC® = myyc” —my,c
-
c2

K=my*(y—1)

. . . 1
This equation reduces to the classical form of Emv2 for v<<c.



Relativistic Kinetic Energy

Equation (2.58) does not seem to resemble the classical result for kinetic energy, K =
omu2. However, if it is correct, we expect it to reduce to the classical result for low
speeds. Let’ s see if it does. For speeds u << ¢, we expand ¥ in a binomial series as
follows:

/ 5 \-1/2
K =mc? l—u—2 —mc?
. C
d 2
= mc? 1+lu—2+... —mc?
\ 2C

where we have neglected all terms of power (u/c)* and greater, because u << c. This
gives the following equation for the relativistic kinetic energy at low speeds:

K = mc? +1mu2 —mc? =1mu2
2 2

which is the expected classical result.




Total Energy and Rest Energy, Mass-energy
Equivalence

We rewrite the energy equation in the form
2

ym02 e =K + mc* (2.63)
\/l—u2 /c?
The term mc? is called the rest energy and is denoted by E,,.
F. = m(;2 (2.64)

This leaves the sum of the kinetic energy and rest energy to
be interpreted as the total energy of the particle. The total
energy is denoted by E and is given by

E =ymc” = me’ _ b
\/l—u2/02 \/1—142/02

—K+E, (265




Kinetic Energy-Velocity (Relativistic and Classical )
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‘ The Equivalence of Mass and Energy

= By virtue of the relation for the rest mass of a
particle:

2
Ly =mc

= We see that there Is an equivalence of mass

and energy in the sense that “mass and
energy are interchangeable”

= Thus the terms mass-energy and energy are
sometimes used interchangeably.
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Problem 2.12 #75

v much mass-energy (in joules) 1s contained in a

canut weighing 0.1 ounce? How much mass-energy

vou gain by eaung 10 ounces of peanuts: Compare

s with the food energy content of peantits, about
kcal per ounce.

1. Converting 0.1 ounce = 2.835x10°kg.
E =mc? =(2.835x10°° kg)(3.00x10° mis)” =2.55x10" J.

Eating 10 ounces results in a factor of 100 greater mass-energy increase, or 2.55x10" J. This is
a small increase compared with your original mass-energy, but it will tend to increase your
weight




Relationship of Energy and Momentum

mu
\/l—uz/c2

p=ymu=

We square this result, multiply by c?, and
rearrange the result. 2% = i

c'=y"muc

2
2.2 4l U 2.2 4 p2
=ymc[02]:ymcﬂ

We use the equation for y to express 82 and find

2Expreszslng2 B tzhrougzjh y | X =72m204[1—lzj
y =UQ-p) =0 -DIy=1-1y 4

224 2 4
=y‘m°c’ —m’c




Energy and Momentum

The first term on the right-hand side is just E?, and the second term is
E,?. The last equation becomes

pzc2:E2—E§

We rearrange this last equation to find the result we are seeking, a
relation between energy and momentum.

2
E* = p202 + EO2 (2.70)
or

E* = p202 +m*c* (2.71)

Equation (2.70) is a useful result to relate the total energy of a particle
with its momentum. The quantities (E? — p%c?) and m are invariant
quantities. Note that when a particle’ s velocity is zero and it has no

momentum, Equation (2.70) correctly gives E, as the particle’ s total
energy.




Useful formulas

ﬂ: pC/E from P=ymu and E:ymCZ

1/2 7]
-2 - £ - |1
C C
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From chapter2 Quiz

When relating the linear momentum and total energy of an object with speed v = 0.8c, which of the
following changes would increase the energy by the greatest amount? Assume that it is possible to
change the mass of the object.

increase the momentum of the object to 2p while keeping the mass constant.

increase the mass of the object to 2m while keeping the momentum constant.

imagine the speed of light to change to 82% of its present value (the object is still at initial speed v).
increase the momentum of the object to 2p while keeping the velocity constant.

increase the speed of the object to 0.95c.



Massless particles have a speed
equal to the speed of light c

= Recall that a photon has “zero” rest mass and that equation
2.70, from the last slide, reduces to: E = pc and we may
conclude that:

= Thus the velocity, u, of a massless particle must be c since,
as 0, and it follows that: u = c.
m — y — — =

E =ymc? and pc = ymuc => ymc® = ymuc




2.13: Computations in Modern Physics

= We were taught in introductory physics that
the international system of units is preferable
when doing calculations in science and
engineering (“everyday” scales).

= In modern physics a somewhat different set of
units Is often used, which is more convenient
for problems considered in modern physics.

= The smallness of quantities often used In
modern physics suggests the need for some
new units more practical for smaller scales .




Units of Work and Energy

= Recall that the work done in accelerating a
charge through a potential difference Is given
by W = gV.

= For a proton, with the charge e = 1.602 X
10~ C being accelerated across a potential
difference of 1 V, the work done on the
particle Is

W = (1.602 x 10719C)(1 V) = 1.602 x 10719 J




The Electron Volt (eV)

= The work done to accelerate the proton
across a potential difference of 1 V could also
be written as

W=(e)lV)=1eV

= Thus eV, pronounced “electron volt,” is also
a unit of energy. It is related to the SI (Systeme
International) unit joule by the 2 previous
equations.

1eV=1602 x 1071°J




Other Units

1) Rest energy of a particle:
Example: E, (proton)

E, (proton) = (1.67x10"*" kg)(3x10° m/s)* =1.50x107'° J

leV

1.602x10° % J
2) Atomic mass unit (amu):

Example: carbon-12

~1.50x1071] —938x10% eV

12 g/mol
6.02x10%* atoms/mol

=1.99x10 > g/atom

Mass (*2C atom) =

Mass (12C atom) =1.99x10*° kg =12 u/atom

1 u=1.66x10-27 kg=931.5 MeV/c?



['wo high energy protons hit each other headon

Solution (a) We use K = 2.00 GeV and the proton rest

energy, 938 MeV, to find the total energy from Equation
(2.65),

E= K+ E; = 2.00 GeV + 938 MeV = 2.938 GeV
The momentum is determined from Equation (2.70).
fret = EF — Ej = (2.938 GeV)* — (0.938 GeV)*
= 7.75 GeV*

The momentum is calculated o be

p=V7.75(GeV/c)* = 2.78 GeV/ ¢

Notice how naturally the unit of GeV/¢ arises in our
calculation.

In order to find B we first find the relauvistc factor 7.
There are several ways to determine y; one is to compare the
rest energy with the total energy. From Equation (2.65) we
have

E,
V1 — o /et

_E _20%8GeV _,
YT E T 0038Gey

E:‘}"ED:

We use Equation (2.62) 1o determine B.

| 3132 -1
B=\/T 5 =\f — = 0.948
¥ 3.13

The speed of a 2.00-GeV proton is 0.95¢ or 2.8 X 108 m/s.

(b) When the two protons collide head-on, the situa-
ton is similar to the case when the two blocks of wood col-
lided head-on with one important exception. The time for
the two protons to interact is less than 107 s, If the two
proions did momentarily siop at rest, then the two-proton
system would have its mass increased by an amount given by
Equation (2.68), 2K/¢* or 4.00 GeV/¢*. The result would be
a highly excited system. In fact, the collision between the
protons happens very quickly, and there are several possible
outcomes. The two protons may either remain or disappear,
and new additional particles may be created. Two of the pos-
sibilities are

(2.78)
(2.79)

prpoptptptp
ptp—a +d

where the symbols are p (proton), ? (antiproton), 7 (pion),
and d (deuteron). We will learn more about the possibili-
ties later when we study nuclear and particle physics. What-
ever happens must be consistent with the conservation laws
of charge, energy, and momentum, as well as with other
conservation laws to be learned. Such experiments are rou-
tinely done in particle physics. In the analysis of these ex-
periments, the equivalence of mass and energy is taken for
granted.




Electromagnetism and Relativity

s Einstein was convinced that magnetic fields
appeared as electric fields observed in another
Inertial frame. That conclusion is the key to
electromagnetism and relativity.

= Einstein’ s belief that Maxwell ’s equations describe
electromagnetism in any inertial frame was the key
that led Einstein to the Lorentz transformations.

= Maxwell’ s assertion that all electromagnetic waves
travel at the speed of light and Einstein’ s postulate
that the speed of light is invariant in all inertial
frames seem intimately connected.




Thank you for your attention!




