Examination II

Name:		 	
UIN:			
2018	 	 	

Physics 222

Fall

Hans A. Schuessler

Time: 50 min

Each problem is worth 5 points.

Part I: Multiple Choice Questions

- 1. Who did first accurately measure the value for the charge of the electron?
 - a. Röntgen
 - b. Thomson
 - c. Planck
 - d. Millikan
 - e. Einstein
- 2. The Rydberg equation is used to:
 - a. determine the ratio of the electron charge to its mass
 - b. calculate the wavelengths of different spectral lines of hydrogen
 - c. measure the mass of the hydrogen atom
 - d. calculate the wavelengths of different transitions in energy level of electrons in helium
 - e. Calculate the X-ray wavelengths from Mosely plots.
- 3. How did Planck modify the classical theory of blackbody radiation to correctly determine his radiation law?
 - a. He found that the blackbody model was incorrect for purposes of theory
 - b. He accepted the Stefan-Boltzmann Law
 - c. He assumed light was absorbed and emitted in quanta
 - d. He realized that the charge of the electron was not quantized
 - e. He proved the necessity of relativistic considerations.
- 4. Consider the photoelectric effect when one increases only the frequency of the incoming light onto the emitter, one measures
 - a. An increased current
 - b. A decrease in the necessary stopping voltage
 - c. No change in either current or stopping voltage
 - d. An increase in the necessary stopping voltage
 - e. Either a or c. You cannot determine which from the information given.

- 5. Which of the following statements is correct about the experiment that first measured the charge of the electron?
 - a. The oil drop is suspended because there are no forces acting on the drop
 - b. The important result was that Coulomb attraction made all the oil drop the same mass, regardless of type of oil
 - c. The mass of the drop was determined by measuring its terminal velocity
 - d. The valve for electron charge had an experimental error of about 35%
 - e. Light hitting the oil drops manipulated their movement in a way to create an interference pattern.
- 6. How did Thomson meausre the charge to mass ratio of the electron?
 - a. He shot helium nuclei into gold foil to measure the nuclei scattering against electrons within.
 - b. He passed cathode rays through a magnetic field and measured the deflection.
 - c. He suspended a drop of oil between electrodes to measure the electric field from the electrons.
 - d. He measured very precisely a known quality of hydrogen atoms and calculated the reduced mass ration within each atom.
- 7. The K_{β} xray comes from a transition of an electron:
 - a. from the L-shell to a vacancy in the K-shell
 - b. from the M-shell to a vacancy in the K-shell
 - c. from the M-shell to a vacancy in the L-shell
 - d. from the N-shell to a vacancy in the M-shell
- 8. At what wave length is the radiation emitted by a human body at its maximum? Assume a temperature of 37°C.
 - a. 9.35µm
 - b. 1.16μm
 - c. 503nm
 - d. 4.15µm
 - e. 850nm

- 9. Indicate in which atom the electron is most strongly bound
 - a. H
 - b. He⁺
 - c. Li⁺⁺
 - d. The same in all the above atoms and ions.
 - e. Be⁺⁺⁺
- 10. In the Franck-Hertz experiment the electron loses energy by
 - a. Ionization of a Hg atom
 - b. Excitation of a Hg atom to the first excited state
 - c. Excitation to the second excited state of a Hg atom
 - d. By being captured by a Hg atom
 - e. by causing to the Hg atom to accelerate
 - 11. When you increase only the intensity of the light onto the emitter, you measure
 - a. A decrease in the necessary stopping voltage
 - b. An increase in the necessary stopping voltage
 - c. An increased current
 - d. No change in either current or stopping voltage
 - e. You cannot determine which from the information given
 - 12. Consider building a scale model of the hydrogen atom using a Bohr's theory. You start with the proton and give it a diameter of 1cm in your setup. What is the diameter of the orbit of the electron if it is to be depicted as being in the **first excited** state?(n=2) Proton **charge radius** 0.8751(61) fm (fermi)
 - a. 530m
 - b. 1.7km
 - c. 2410m
 - d. 6.3km
 - e. 30m

Part II: Short problems Please show your work to get credit and circle the closest answer

- 13. The wavelength of maximum intensity of the sun's radiation is observed to be near 500nm. Assume the sun to be black body and calculate the sun's surface temperature
 - a. 4600 K
 - b. 3200 K
 - c. 5800 K
 - d. 6000 K
 - e. 5700 K
- 14. The power per unit area R(T) emitted from the sun's surface
 - a. $4.56 \times 10^7 \, \text{W/m}^2$
 - b. $6.23 x \ 10^7 \ W/m^2$
 - c. $5.78 \times 10^7 \, \text{W/m}^2$
 - d. $7.00x \ 10^7 \ W/m^2$
 - e. $6.42 \times 10^7 \, \text{W/m}^2$
- 15. A surface is irradiated with monochromatic light of variable wavelength. Above 600nm no photoelectrons are emitted from the surface. With an unknown wavelength, a stopping potential of 4 V is necessary to eliminate the photoelectric current. What is the wavelength?
 - a. 305 nm
 - b. 205 nm
 - c.405 nm
 - d. 505 nm
 - e.105 nm
- 16. A blackbody's temperature s increased from 600K to 1500K. By what factor does the total power emitted per unit area increase?
 - a. 4
 - b. 8
 - c. 16
 - d. 39
 - e. 2

- 17. Consider pair annihilation and indicate which answer is correct.
 - a. The two emitted photons move in the same direction.
 - b. Each emitted photon has an energy of about 0.511 MeV.
 - c. Due to conservation of momentum, the two emitted photons move at right angles to each other.
 - d. Four photons are emitted to conserve energy
 - 18. Calculate the Rydberg constant for the hydrogen-like ion of uranium.

use M(uranium)=238.05078 u m(electron)=0.0005485799 u)

a. 0.9999859 $x10^7 x m^{-1}$

b. 0.9999991 $x10^7 x m^{-1}$

- c. 0.9999977 $x10^7 x m^{-1}$
- d. 0.9997633 $x10^7 x m^{-1}$
- e. 1.0973732 $x10^7 x m^{-1}$
- 19. The Bohr radius is $0.5 \ge 10^{-10}$ m. What is the dicemeter of the stationary state with n=4?
 - a. $2 \ge 10^{-10} \text{m}$
 - b. $4 \times 10^{-10} m$
 - c. $8 \ge 10^{-10} \text{m}$
 - d. 16 x 10⁻¹⁰m
 - e. $26 \ge 10^{-10} \text{m}$
- 20. How much energy is required to produce a proton –antiproton pair?
 - a. 1877 MeV
 - b. 938 MeV
 - c. 0.511 MeV
 - d. 1.22 MeV