CHAPTER 5

Wave Properties of Matter and Quantum Mechanics

s 5.1 X-Ray Scattering

= 5.2 De Broglie Waves

= 5.3 Electron Scattering
= 5.4 Wave Motion

= 5.5 Waves or Particles?
= 5.6 Uncertainty Principle

= 5.7 Probabllity, Wave Functions, and the
Copenhagen Interpretation

s 5.8 Particle in a Box




5.1: X-Ray Scattering

= Max von Laue suggested that if x rays were a form of
electromagnetic radiation, interference effects should be

observed.

= Crystals act as three-dimensional gratings, scattering
the waves and producing observable interference

effects.
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Bragg s Law

= William Lawrence Bragg interpreted the x-ray scattering as the reflection of the
incident x-ray beam from a unique set of planes of atoms within the crystal.

m There are two conditions for constructive interference of the scattered x rays:
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EXAMPLE 5.1

X rays scattered from rock salt (NaCl) are observed to have
an intense maximum at an angle of 20° from the incident
direction. Assuming n = 1 (from the intensity), what must
be the wavelength of the incident radiauon?

Strategy We will use Equ,ar.ion (5.1) to find A, but we need
to know d, the lattice spacing, and the angle #. Notice that
the angle between the incident beam and scattered wave for
consiructive interference is always 26 (see Figures 5.4 and
5.5), and because 26 = 20°, we have 8 = 10°. We can use the
density of NaCl to help find d, because the volume taken up
by one atom is d*.

Solution In Section 4.1 we showed that

Number of molecules Nyp

Volume M

where N, is Avogadro’s number, p is the density, and M is

the gram-molecular weight. For NaCl, p = 2.16 g_a"n:m3 and
M = 58.5 g/mol.
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Because NaCl has a cubic array, we take d as the distance

between Na and Cl atoms, so we have a volume of d° per
atom.

1 _ e ALOMMS
F= 4.45 % 10% i

d=282 % 107" m = 0.282 nm

This technique of calculatung the lattice spacing works for
only a few cases because of the variety of crystal structures,
many of which are noncubic.

We use Equar.inn (5.1) to find A.

A= 2d sin # _ (2)(0.282 nm)(sin 107)

n 1

= (.0Y98 nm

which is a typical x-ray wavelength. NaCl is a useful crystal
for determining x-ray wavelengths and for calibrati:ng ex-
perimenlal apparatus.
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The Bragg Spectrometer

X-ray tube
= A Bragg spectrometer scatters x rays from several y Deecton
crystals. The intensity of the diffracted beam is \@
determined as a function of scattering angle by Xy TN
rotating the crystal and the detector. | j ---+----:---‘----:Z,L-»-(;" ]29
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= When a beam of x rays passes through the

powdered crystal, the dots become a series of rings.
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‘ Quiz question

Which of the following is true about Bragg planes?

a. There is only one Bragg plane for any given crystal
structure.

b.They are especially useful for detecting transitions
between energy levels in the crystals' atoms.

c.They are used to scatter alpha particles in gold and
other materials.

d.They are evenly spaced planes within crystal
structures of atoms.

e. All of the above.
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11) The color of visible light are listed in increasing order
of frequency.

a) violet, blue, yellow, green, orange, red
b) red, yellow, orange, violet, blue, green
c) blue, violet, green, yellow, red

d) red, orange, yellow, green, blue, violet




5.2: De Broglie Waves = matter waves

Prince Louis V. de Broglie suggested that mass particles should
have wave properties similar to electromagnetic radiation.

Thus the wavelength of a matter wave is called the de Broglie
wavelength:

A=—
P

= Since for a photon, £ = pc and E = hf, the energy can be written as

hf = pc=pif




EXAMPLE 5.2

Calculate the de Broglie wavelength of (a) a tennis ball of Strategy The calculation for both of these wavelengths is
mass 57 g traveling 25 m/'s (about 56 mph) and (b) an elec- a straightforward application of Equation (5.2).
tron with kinetic energy 50 eV.

Solution (a) For the tennis ball, m = 0.057 kg, so Note that because the kinetic energy of the electron is so
s small, we have used a nonrelativistic calculation. Calcula-
B 6.63 % 1075 — ; ; .
A== —47% 10 % m tions in modern physics are normally done using €V units,
p (0.057 kg)(25m/s) both because it is easier and also because eV values are more

appropriate for atoms and nuclei (MeV, GeV) than are
joules. The values of iic and some masses can be found in-
sicdle the front cover.

{h) For the electron, it is more convenient to use €V units,
so we rewrite the wavelength A as

_h h he

- P - vV 2mK N '\..-'E{mcgjﬂ' 108”1
_ ~-15
hc = 4.1357 x 10 eV s X3 X ——

_ 1240 V- nm — 017 nm S
\f{E]{ﬂ.Ell % 10° eV)(50 eV) = 1240eV - nm

A




Chicker - ‘deatz’on.r

14) Compute the De Broglie wavelength of

I. A 2000 kg car traveling at 100m/sec.

li. A smoke particle of mass 10-°g moving at 1cm/sec
1. An electron with kinetic energy of 1eV

Iv. A proton with Kkinetic energy of 1eV

a) 3.3x10*'m, 6.6x10%°m, 1.2nm, 0.3nm
b) 3.3x10%°m, 6.6x10%*m, 1.2nm, 0.3nm
c) 3.3x1039m, 6.6x1023m, 12A, 0.028nm
d) 5.5x1025m, 6.6x1023m, 1.2A, 500A
e) None of the above




‘ Bohr’ s Quantization Condition

= One of Bohr’ s assumptions concerning his hydrogen atom model was
that the angular momentum of the electron-nucleus system in a
stationary state is an integral multiple of h/21r.

= The electron is a standing wave in an orbit around the proton. This
standing wave will have nodes and be an integral number of
wavelengths.

h
2xr =nA=n—
P
= The angular momentum becomes:
nh
L=rp=—=nh
27

Apply the deBroglie wavelength of the electron in the Bohr atom as a standing wave



When de Broglie's matter waves are applied to electrons in the
Bohr atom, which of the following occurs?

a.The electron is found to have in its orbit an integral number of
half-wavelengths.

b.Bohr's quantization assumption for electron orbits is modified
to incorporate the wave properties of the electron.

c.de Broglie's results allow an integral number of wavelengths
in the electron orbits.

d.The angular momentum of the electron in the atom is
constant, with longer wavelengths at larger quantum numbers.




‘ 5.3: Electron Scattering

= Davisson and Germer experimentally observed that electrons were diffracted
much like x rays in nickel crystals.
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m  George P. Thomson (1892-1975), son of J. J.
Thomson, reported seeing the effects of electron
diffraction in transmission experiments. The first
target was celluloid, and soon after that gold,
aluminum, and platinum were used. The randomly
oriented polycrystalline sample of SnO, produces
rings as shown in the figure at right.




The Spallation Neutron Source

at Oakridge

EXAMPLE 5.4

In introductory physics, we learned that a particle (ideal
gas) in thermal equilibrium with its surroundings has a ki-
netic energy of 3k7T/2. Calculate the de Brogliec wavelength
for (a) a neutron at room temperature (300 K) and (b) a
“cold” neutron at 77 K (liquid nitrogen).

Strategy In both of these cases we will use Equation (5.2)
to find the de Broglie wavelength. First, we will need to de-
termine the momentum, and we note in both cases the en-
ergies of the particles will be so low that we can perform a
nonrelativistic calculation. Neutrons have a rest energy of
almost 1000 MeV, and their kinetic energies at these tem-
peratures will be quite low (0.026 ¢V at 300 K).

Solution We begin by finding the de Broglie wavelength of
the neutron in terms of the temperature.

(5.8)

aoh_ A ke
P V3mkT  \/3(mc*)kT
1 1240 eV+*nm

T'% 1/3(938 X 10° ¢V)(8.62 X 10* eV/K)

It again has been convenient to use ¢V units.

2.52
A= T1/2 nm-K'?
2.52 nm+K'?
A(S00K) = = 0.145 nm 59
( ) V300 K N
2.52 nm-+K'?
A(77K) = = (0.287 nm
LR V77K

These wavelengths are thus suitable for diffraction by crys-
tals. “Supercold” neutrons, used to produce even larger
wavelengths, are useful because extraneous electric and
magnetic fields do not affect neutrons nearly as much as
electrons.




5.4: Wave Motion

7 De Broglie matter waves suggest a further description. The
displacement of a wave is

Plw.1) = Asin{zf(x—vt)}
7 This is a solution to the wave equation
O°¥Y 10°¥
ox> v o

a Define the wave number k and the angular frequency w as:

27 27

k=" and ® = —

a The wave function is now: W(x, t) = A sin (kx — wt)




Wave Properties

= The phase velocity is the velocity of a point on the wave that has a
given phase (for example, the crest) and is given by

A o
T Tk
= A phase constant @ shifts the wave:

Y(x,1)= Asm(kx — ot + ¢). ¥ (x, t)

W (x,1) = Asin(kx — ot + §) vto —z0
0




Wave motion

Quantum mechanics is linearly based on wave motion: wave particle duality.
Towards the wave equation:

Max (particle) velocity

y(x,t) = Asin(wt — kx)  wave function at fixed location ‘x’

_9y _ _
Uy =50 = w A cos(wt — kx)

Max (particle) acceleration

0%y :
ay =5 = —w?Asin(wt — kx) = —w? y(x,t)  SHMa, = —wy

At fixed time t

0%y(xt) _ 1 2%y(xt)

Slope:% = —k A cos(wt — kx)

dx2 2  9t2
623/ 2 . 2
Curvature: —— = —k“ Asin(wt — kx) = —k* y(x,t)
62 62 aZy 2 ( ) 2
. 0%y 10%y 9t2 __ —wey(xt) -—w* 5
Wave equation 9xZ — pZoc2 32_32; = Ty - Y,
ox




Superposition of waves with different
frequencies,phases, and amplitudes
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Principle of Superposition

= When two or more waves traverse the same region, they act
Independently of each other.

= Combining two waves yields:

Y (x,1) =Y (x,1)+Y,(x1)=24 cos(%kx - D7W tjcos(kavx - W,t)

= The combined wave oscillates within an envelope that denotes the
maximum displacement of the combined waves.
=  When combining many waves with different amplitudes and

frequencies, a pulse, or wave packet, is formed which moves at a
group velocity:

_Dw
T Dk - >
Ax
V(x 1) = ¥ (x 1) + Vy(x, 1)
= Acos(kx — wt) + Acos(kx — wt) (5.20)

i 1 1 1 |
= 2A cos{Q(k, - kp)x — 2(0)[ - (:).J)l}c'()sg?(kl + ky)x — 2(w, + wg)l‘

Ak Aw

= 2A cos( e — t)cos(knx - @,t) (5.21)



Wave Packet Envelope(from two waves)

= The superposition of two waves yields a wave number and angular
frequency of the wave packet envelope.

= The range of wave numbers and angular frequencies that produce the
wave packet have the following relations:

Ak Ax =2rx Ao At =27
= A Gaussian wave packet has similar relations:
DiDx = E Ao At = L
2 2

m The localization of the wave packet over a small region to describe a
particle requires a large range of wave numbers. Conversely, a small
range of wave numbers cannot produce a wave packet localized
within a small distance.




Wave packet : Fourier Series and Integral

= The sum of many waves that form a wave packet is called a Fourier

series:
W(x,t)= ZAj cos(k,x—w,t)
i
= Summing an infinite number of waves yields the Fourier integral:

Y(x,1) = I)i(k) cos(kx —wt) dk




Gaussian Function

= A Gaussian wave packet describes the envelope of a pulse wave.

F(x,0)=¥(x)= Ae cos(kyx)

(%)
’ﬁ ,(Yn\/_ o~ Ak2Ax?
///ﬂ ﬂ\/\(— cos kox
(k) I N
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(a) T (b)
= The group velocity is éy =~




<¥Sroup velocity of the wave packet=velocity of the particle described by the wavepacket
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Dispersion causes group and phase velocities to be different

= Considering the group velocity of a de Broglie wave packet yields:

L ar pc’
S dp E
= The relationship between the phase velocity and the group velocity is
do d dv
Uy = = (V) =V + k2
dk dk dk

s Hence the group velocity may be greater or less than the phase
velocity. A medium is called nondispersive when the phase velocity
IS the same for all frequencies and equal to the group velocity.
W
/\fp,ﬂ‘:%% —. f/l)“:‘/up—;“&.

k
\




phase and group velocity
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Figure 5.17 Progression with
time of wave packet for which

U, = vy,,/2. Note how the indi-

vidual wave (arrow and dot alter-
nately) moves through the wave
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EXAMPLE 5.5

We just saw that the speed of a nonrelanvisuc particle of
mass m is not equal to its phase velocity. Show that the par-
ticle speed 15 equal to the group velocity.

Strategy We can use the relanon for the group velocity in
Equation (5.28) or (5.31). Either should work, and using
both equaLinns will be instucove.

Solution First, we look at Equation (5.31) for our nonrela-
tivistic particle:

(5.35)

In order to use Equaton (5.28) we ualize the results in
Equations (5.29) and (5.30) for @ and k.

_de dE/R) dE_d P2
T dk T d(p/kh)  dp dp2m 2m

We agree that the parucle, when acting as a wave, moves
with the group velocity, not the phase velocity.




5.5: Waves or Particles?

= Young s double-slit diffraction experiment
demonstrates the wave property of light.

= However, dimming the light results in
single flashes on the screen
representative of particles.

(a) 20 counts
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1
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(a) |
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(b)

(d) ~4000 counts



Which slit?

To determine which slit the electron went through: We set up a light
shining on the double slit and use a powerful microscope to look at the
region. After the electron passes through one of the slits, light bounces
off the electron; we observe the reflected light, so we know which slit
the electron came through.

Use a subscript “ph” to denote variables for light (photon). Therefore
the momentum of the photon is

L
p=— > —
¥ Ap d

. h h
The momentum of the electrons will be on the order of pj =— ~ ri

el

The difficulty is that the momentum of the photons used to determine
which slit the electron went through is sufficiently great to strongly
modify the momentum of the electron itself, thus changing the direction
of the electron! The attempt to identify which slit the electron is passing
through will in itself change the interference pattern.




Figure 5.271 An atempt to de-
termine which slit an electron
passes through in the double-slit
experiment. A powerful light
source scatters a photon from the
w electron, and the scattered pho-
=~ Source . .
T:,g\"_-cf]ight ton is observed. The moton of
the electron is affected.

The difficulty is that the momentum of the photons used to determine which

The difhficulty is that the momentum of the photons used to determine which
slit the electron went through is sufficiently great to strongly modify the momen-
tum of the eleciron itself, thus changing the direction of the electron! The attempt
to identify which slit the electron is passing through will in itself change the inter-
ference pattern. We will take a closer look at this experiment in Section 5.6. In
trying io determine which slit the eleciron went through, we are examining the
particle-like behavior of the eleciron. When we are examining the interference
pattern of the electron, we are using the wavelike behavior of the electron.

Bohr resolved this dilemma by pointing out that the particle-like and wave-
like aspecis of nature are complementary. Both are needed—they just can’t be
observed simultaneously.

Bohr’s principle of complementarity: It is not possible to describe physical
observables simultaneously in terms of both pariicles and waves.

Physical observables are those quantities such as position, velocity, momentum,
and energy that can be experimentally measured. In any given instance we must
use either the particle description or the wave description. Usually the choice is
clear. The interference paitern of the double-slit experiment suggests that the
light (or electron) had to go through both slits, and we must use the wave de-
scription. In our description of nature, we cannot describe phenomena by dis-
playing both particle and wave behavior at the same time.

“’MWMW“ R
w nrslms

No which-way information: Interference |

,H

Which-way information: Decoherence

Principle of
complementarity

Physical observables




Electron Double-Slit Experiment

C. Jonsson of Tubingen,
Germany, succeeded in 1961
In showing double-slit
interference effects for
electrons by constructing very
narrow slits and using
relatively large distances
between the slits and the
observation screen.

This experiment demonstrated
that precisely the same
behavior occurs for both light
(waves) and electrons
(particles).




Wave particle duality solution

The solution to the wave particle duality of an event is given by the
following principle.

Bohr’s principle of complementarity: It is not possible to describe
physical observables simultaneously in terms of both particles and
waves.

Physical observables are those quantities such as position, velocity,
momentum, and energy that can be experimentally measured. In any
given instance we must use either the particle description or the wave

descripton. |

19277. Doaish H\yﬁdtt Niels Bohe,

Prhcq’le of anlcu\en'tarit/v : To understand ary given
experiment, we must use either 11¢ wave or the photen

theory , bk not both. R B radation 3 for matter




5.6: Uncertainty Principle

= [tis impossible to measure simultaneously, with no uncertainty,
the precise values of k and x for the same particle. The wave

number k may be rewritten as
k:27z: 27 =p2—”=£
A hilp h h
= For the case of a Gaussian wave packet we have

A 1
N Ax =" Ax =~
h 2
Thus for a single particle we have Heisenberg’ s uncertainty
principle: ;
Ap, Ax > —




Energy Uncertainty

= |f we are uncertain as to the exact position of a particle, for
example an electron somewhere inside an atom, the particle
can’ t have zero kinetic enerqv. ,
K . :pmin Z(Ap) > h
T 2m 2m  2me?

= The energy uncertainty of a Gaussian wave packet is

AE=hAf =122 —h Ao

2

27
combined with the angular frequency relation
Ao Af = ﬁAz‘ =3 !
h 2

h
= Energy-Time Uncertainty PrincipleAE Af > 5
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Which of the following statements is most
correct about the uncertainty principle?

a) It is impossible to know exactly both the
position and the momentum of a particle
simultaneously.

b) An electron with some momentum can be
trapped into an arbitrarily small box.

c) Our instruments will eventually be able to
measure more precisely than the principle
presently allows.

d) On large length scales, the uncertainty
principle dominates our understanding of the
physical world.

e) A particle limited in space can occupy any
energy.




E EXAMPLE 5.8

Calculate the momentum uncertainty of (a) a tennis ball
constrained to be in a fence enclosure of length 35 m sur-
rounding the court and (b) an elecron within the smallest
diameter of a hydrogen atom.

Strategy We will use Equadon (5.40) to find Ap,. The
position uncertainty Ax is approximately half of the
enclosure.

Solution (a) If we insert the uncertainty of the locaton of
the tennis ball, Ax = (35 m) /2, mto Equation (5.40), we have

CLO5 X 107M]-s
~ 2(35m)/2

We will have no problem specifying the momentum of the
tennis ball!

=3 X lﬂ_mkg-m,fs

Not a large uncertainty

(b) The diameter of the hydrogen atom in its lowest
energy state (smallest radius) is 2a,. We arbitrarily take the
uncertainty Ax to be half the diameter or equal to the ra-
dius, Ax = ay.

Ax= a, = 0520 X 107" m
_ ] i 105X 107" ]-s
2 Ax 2(0.520 X 107" m)
=1x lﬂ_mkg*m;’s

Ap,

This may seem like a small momentum, but for an electron
with a mass of about 10~ kg, it corresponds to a speed of
about 10° m/s, which is not insignificant! Note that this is
comparable to the speed of the eleciron in the first Bohr
orbit [Equation (4.31)].

This is a large uncertainty




5.7: Probability, Wave Functions, and the
Copenhagen Interpretation

= The wave function determines the likelihood (or probability) of
finding a particle at a particular position in space at a given time.

P(y)dy =¥ (y,0)|" dy

= The total probability of finding the electron is 1. Forcing this
condition on the wave function is called normalization.

J:P (y)dy = ji\q‘(y,t)\z dy =1




The Copenhagen Interpretation

= Bohr’ s interpretation of the wave function consisted of 3
principles:
1)  The uncertainty principle of Heisenberg
2)  The complementarity principle of Bohr

3) The statistical interpretation of Born, based on
probabilities determined by the wave function

s  Together these three concepts form a logical interpretation of
the physical meaning of quantum theory. According to the
Copenhagen interpretation, physics depends on the outcomes
of measurement.




5.8: Particle iIn a Box

m A particle of mass m is trapped in a one-dimensional box of width I.
= The particle is treated as a wave.

N The box puts boundary conditions on the wave. The wave function must be
zero at the walls of the box and on the outside.

N In order for the probability to vanish at the walls, we must have an integral
number of half wavelengths in the box.
A 24
"ot or A4, =" (n=1,23,..)
2 n

h fth icle i E—KE—lmvz—pz— h
n The energy of the particle is B=5 m oma

= The possible wavelengths are quantized which yields the energy:

2 2 2
Enzh—(ﬁj 2 " m=1,23,..)
2m\ 2/ Sm/

m The possible energies of the particle are quantized.




Probability of the Particle

m The probability of observing the
particle between x and x + dx in
each state is

P, dxoc|¥, (x)] dx
U

& Note that E, = O is not a possible
energy level.

= The concept of energy levels, as ¢,
first discussed in the Bohr
model, has surfaced in a natural
way by using waves.




u EXAMPLE 5.13

Find the quantized energy levels of an electron constrained
to move in a one-dimensional atom of size 0.1 nm.

L]

. K . hic
E = n- = n- -
Bmé* Smec £

T 2
Strategy We previously found the minimum kinetic en- = n? (1239.8 eV.nm)

n — N
ergy of an electron in a similar situation in Example 5.9. In (8)(0.511 % 10° eV)(0.1 nm)*
the present case we want to use quantum theory, so we use _ .z -

’ = n (38 eV)

Equation (5.51) for the energy levels.
The first three energy levels are E; = 38 eV, E; = 152 eV,

Solution We use Equation (5.51) and insert the appropri- and E; = 342 eV.
ate values for m and £.




Particle in a box

Consider a particle trapped in a box to have wave behavior;

% E,

16F,
9E,
4F,

P(x) IEI] o
3 /\ / \ [\| | *Energy ;
An integer number of half wavelengths must fit into Uy v/\ Vs N—
the box. At the wall’s the probability must be zero
which means also the wave function must be zero. o 2 —
2 #’/1 hf
n-=1 or A= ( =1,23.... )
2 0 L 0 L
Position
This condition leads to energy quantization only certain energies are possible
E—k—lmvz—ﬁand c = hf So-E—pz— e _ e
ST Ty anepe= * P T om T 222m - 8mi2
hznz h?m?
(n=1,23 ) or E, =n?

Note: Bohr radius a, = 0.53x1071° m and diameter 2a, = 0.1 nm

5.13 Calculate the quantized energy levels of an electron in a one-dimensional H-atom ({=0.1nm)

9
_hZm? , (4x10-16eVs)2(3x108%)2(10 MMy2

lm_~ _ p23gey
2mzzc2 -n 8(0.5x106eV)2(0.1nm)? e




5.42 What is the minimum uncertainty in the speed of a
bacterium................

h
APAX = M AVAX > >

h 1.054x107* J-s

— — _ ~14
C2mAX 2(3.0x10™ kg )(1.0x10° m) =176x107 mis

AV
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5.36 some physics theories indicate a lifetime of the proton of 10"36
years. What does such a prediction say about the energy of a proton??

AEAL > —

-34
AE> 1.054x10 ™ J-s _1.67x107® ]

2At  2(1x10% y)(3.16x10" sly)
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13) The energies of the excited states of a particle in a
Infinite square well are exact and have no energy

uncertainty. What does this suggest about the lifetime of a
particle in those excited states?

a) The particle stays in its excited state forever.
b) The particle decays immediately.

c) The particle decays with an exponential decay law.
d) The lifetime depends on whether the particle is an
electron or a proton.
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15) An electron Is trapped in a one-dimensional region of
length 1x10-°m. How much energy must be supplied to
excite the electron from the ground state to the second
excited state?

a) 38 eV
b) 114 eV
c) 304 eV

d) 342 eV



dzw + VY = EyY
2m dx?
V(x)
' N l
0 L
Position
fEnergy
by
7
% E,
s bt —— 16 E,
., 9E,
it 4E,
El
0 L 0
Position

Infinite Square well

Divide the problem into 3 parts: two are outside the well and one is inside the well.

OUTSIDE: x <0 and x>0; yY=0

L L

: V=0 d—h—zdz—w E ith bound diti =0atx=0,L
INSIDE: = an 2 doc2 = lﬂ with boundary conditionyy = 0atx = 0,
2
% = —k%y; and k? = Z;EE Y = Asinkx + Bcoskx
ax = 0; 0 = Asin0 + Bcos0 So; B=0
At x = L; 0 = AsinkL (n=1,2,3 ... ... )
kL = nm n=123.... )
So; k= %
Y = Asinkx =
Asing X
hZn? _ (€ a2 . o MTX _
n L2 Determine the only constant A: fO Acsin (T)dx =1
L
5 nnx 5 2 2 = mnx
A? | sin? dx}A2—1—>A= — and| Y, = |- sin(——)
0




