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CHAPTER 5
Wave Properties of Matter and Quantum Mechanics I



5.1: X-Ray Scattering

◼ Max von Laue suggested that if x rays were a form of 
electromagnetic radiation, interference effects should be 
observed.

◼ Crystals act as three-dimensional gratings, scattering 
the waves and producing observable interference 
effects.

Lattice spacing d is about o.1 nm



Bragg’s Law
◼ William Lawrence Bragg interpreted the x-ray scattering as the reflection of the 

incident x-ray beam from a unique set of planes of atoms within the crystal.

◼ There are two conditions for constructive interference of the scattered x rays: 

1) The angle of incidence 

must equal the angle of 

reflection of the outgoing 

wave.

2) The difference in path 

lengths must be an 

integral number of 

wavelengths.

▪ Bragg’s Law:

nλ = 2d sin θ

(n = integer)

Used for determining 

wavelength or  

interplanar spacing





Figure 5-6a p166

structure of DNA-double-helix  by x-ray diffraction  (Watson and Crick)



◼ A Bragg spectrometer scatters x rays from several 

crystals. The intensity of the diffracted beam is 

determined as a function of scattering angle by 

rotating the crystal and the detector.

◼ When a beam of x rays passes through the 

powdered crystal, the dots become a series of rings.

The Bragg Spectrometer



Quiz question
◼ Which of the following is true about Bragg planes?

◼ a.  There is only one Bragg plane for any given crystal 

structure.

◼ b.They are especially useful for detecting transitions 

between energy levels in the crystals' atoms.

◼ c.They are used to scatter alpha particles in gold and 

other materials.

◼ d.They are evenly spaced planes within crystal 

structures of atoms.

◼ e. All of the above.



11) The color of visible light are listed in increasing order 

of frequency.  

a) violet, blue, yellow, green, orange, red

b) red, yellow, orange, violet, blue, green  

c) blue, violet, green, yellow, red 

d) red, orange, yellow, green, blue, violet  

Clicker - Questions



5.2: De Broglie Waves = matter waves

◼ Prince Louis V. de Broglie suggested that mass particles should 
have wave properties similar to electromagnetic radiation.

◼ Thus the wavelength of a matter wave is called the de Broglie 
wavelength:

◼ Since for a photon, E = pc and E = hf, the energy can be written as





14) Compute the De Broglie wavelength of

i. A 2000 kg car traveling at 100m/sec.

ii. A smoke particle of mass 10-6g moving at 1cm/sec

iii. An electron with kinetic energy of 1eV

iv. A proton with kinetic energy of 1eV

a) 3.3x10-41m, 6.6x10-25m, 1.2nm, 0.3nm

b) 3.3x10-25m, 6.6x10-24m, 1.2nm, 0.3nm

c) 3.3x10-39m, 6.6x10-23m, 12Å, 0.028nm

d) 5.5x10-25m, 6.6x10-23m, 1.2Å, 500Å

e) None of the above

Clicker - Questions



Bohr’s Quantization Condition

◼ One of Bohr’s assumptions concerning his hydrogen atom model was 
that the angular momentum of the electron-nucleus system in a 
stationary state is an integral multiple of h/2π.

◼ The electron is a standing wave in an orbit around the proton. This 
standing wave will have nodes and be an integral number of 
wavelengths. 

◼ The angular momentum becomes:

Apply the deBroglie wavelength of the electron in the Bohr atom as a standing wave



When de Broglie's matter waves are applied to electrons in the 

Bohr atom, which of the following occurs?

a.The electron is found to have in its orbit an integral number of 

half-wavelengths.

b.Bohr's quantization assumption for electron orbits is modified 

to incorporate the wave properties of the electron.

c.de Broglie's results allow an integral number of wavelengths 

in the electron orbits.

d.The angular momentum of the electron in the atom is 

constant, with longer wavelengths at larger quantum numbers.



5.3: Electron Scattering
◼ Davisson and Germer experimentally observed that electrons were diffracted 

much like x rays in nickel crystals.

◼ George P. Thomson (1892–1975), son of J. J. 

Thomson, reported seeing the effects of electron 

diffraction in transmission experiments. The first 

target was celluloid, and soon after that gold, 

aluminum, and platinum were used. The randomly 

oriented polycrystalline sample of SnO2 produces 

rings as shown in the figure at right.



The Spallation Neutron Source 

at Oakridge



◼ De Broglie matter waves suggest a further description. The 

displacement of a wave is

◼ This is a solution to the wave equation

◼ Define the wave number k and the angular frequency ω as:

◼ The wave function is now: Ψ(x, t) = A sin (kx − ωt)

5.4: Wave Motion

and



Wave Properties

◼ The phase velocity is the velocity of a point on the wave that has a 

given phase (for example, the crest) and is given by

◼ A phase constant Φ shifts the wave:

.



Wave motion



Superposition of waves with different 
frequencies,phases, and amplitudes



Principle of Superposition
◼ When two or more waves traverse the same region, they act 

independently of each other. 
◼ Combining two waves yields:

◼ The combined wave oscillates within an envelope that denotes the 
maximum displacement of the combined waves.

◼ When combining many waves with different amplitudes and 
frequencies, a pulse, or wave packet, is formed which moves at a 
group velocity:                
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Wave Packet Envelope(from two waves)

◼ The superposition of two waves yields a wave number and angular 
frequency of the wave packet envelope.

◼ The range of wave numbers and angular frequencies that produce the 
wave packet have the following relations:

◼ A Gaussian wave packet has similar relations:

◼ The localization of the wave packet over a small region to describe a 
particle requires a large range of wave numbers. Conversely, a small 
range of wave numbers cannot produce a wave packet localized 
within a small distance. 

DkDx =
1

2



Wave packet : Fourier Series and Integral

◼ The sum of many waves that form a wave packet is called a Fourier 
series:

◼ Summing an infinite number of waves yields the Fourier integral:



◼ A Gaussian wave packet describes the envelope of a pulse wave.

◼ The group velocity is

Gaussian Function

X=



mv c^2/ mc^2=v

Group velocity of the wave packet=velocity of the particle described by the wavepacket



Dispersion causes group and phase velocities to be different

◼ Considering the group velocity of a de Broglie wave packet yields:

◼ The relationship between the phase velocity and the group velocity is    

◼ Hence the group velocity may be greater or less than the phase 

velocity. A medium is called nondispersive when the phase velocity 

is the same for all frequencies and equal to the group velocity.



phase and group velocity

ugr =
Dw

Dk





5.5: Waves or Particles?

◼ Young’s double-slit diffraction experiment 

demonstrates the wave property of light.

◼ However, dimming the light results in 

single flashes on the screen 

representative of particles.



Which slit?

◼ To determine which slit the electron went through: We set up a light 
shining on the double slit and use a powerful microscope to look at the 
region. After the electron passes through one of the slits, light bounces 
off the electron; we observe the reflected light, so we know which slit 
the electron came through.

◼ Use a subscript “ph” to denote variables for light (photon). Therefore 
the momentum of the photon is

◼ The momentum of the electrons will be on the order of .

◼ The difficulty is that the momentum of the photons used to determine 
which slit the electron went through is sufficiently great to strongly 
modify the momentum of the electron itself, thus changing the direction 
of the electron! The attempt to identify which slit the electron is passing 
through will in itself change the interference pattern.





Electron Double-Slit Experiment

◼ C. Jönsson of Tübingen, 

Germany, succeeded in 1961 

in showing double-slit 

interference effects for 

electrons by constructing very 

narrow slits and using 

relatively large distances 

between the slits and the 

observation screen.

◼ This experiment demonstrated 

that precisely the same 

behavior occurs for both light 

(waves) and electrons 

(particles).



Wave particle duality solution

◼ The solution to the wave particle duality of an event is given by the 

following principle.

◼ Bohr’s principle of complementarity: It is not possible to describe 

physical observables simultaneously in terms of both particles and 

waves.

◼ Physical observables are those quantities such as position, velocity, 

momentum, and energy that can be experimentally measured. In any 

given instance we must use either the particle description or the wave 

description.



5.6: Uncertainty Principle

◼ It is impossible to measure simultaneously, with no uncertainty, 

the precise values of k and x for the same particle. The wave 

number k may be rewritten as

◼ For the case of a Gaussian wave packet we have

Thus for a single particle we have Heisenberg’s uncertainty 

principle:



Energy Uncertainty

◼ If we are uncertain as to the exact position of a particle, for 

example an electron somewhere inside an atom, the particle 

can’t have zero kinetic energy.

◼ The energy uncertainty of a Gaussian wave packet is

combined with the angular frequency relation

◼ Energy-Time Uncertainty Principle: .





Which of the following statements is most 

correct about the uncertainty principle?

a) It is impossible to know exactly both the 

position and the momentum of a particle 

simultaneously.

b) An electron with some momentum can be 

trapped into an arbitrarily small box.

c) Our instruments will eventually be able to 

measure more precisely than the principle 

presently allows.

d)  On large length scales, the uncertainty 

principle dominates our understanding of the 

physical world.

e) A particle limited in space can occupy any 

energy.



This is a large uncertaintyNot a large uncertainty



5.7: Probability, Wave Functions, and the 

Copenhagen Interpretation

◼ The wave function determines the likelihood (or probability) of 

finding a particle at a particular position in space at a given time.

◼ The total probability of finding the electron is 1. Forcing this 

condition on the wave function is called normalization. 



The Copenhagen Interpretation

◼ Bohr’s interpretation of the wave function consisted of 3 

principles:

1) The uncertainty principle of Heisenberg

2) The complementarity principle of Bohr

3) The statistical interpretation of Born, based on 

probabilities determined by the wave function

◼ Together these three concepts form a logical interpretation of 

the physical meaning of quantum theory. According to the 

Copenhagen interpretation, physics depends on the outcomes 

of measurement.



5.8: Particle in a Box

◼ A particle of mass m is trapped in a one-dimensional box of width l.

◼ The particle is treated as a wave. 

◼ The box puts boundary conditions on the wave. The wave function must be 

zero at the walls of the box and on the outside.

◼ In order for the probability to vanish at the walls, we must have an integral 

number of half wavelengths in the box.

◼ The energy of the particle is .

◼ The possible wavelengths are quantized which yields the energy:

◼ The possible energies of the particle are quantized.



Probability of the Particle

◼ The probability of observing the 

particle between x and x + dx in 

each state is

◼ Note that E0 = 0 is not a possible 

energy level.

◼ The concept of energy levels, as 

first discussed in the Bohr 

model, has surfaced in a natural 

way by using waves.





An integer number of half wavelengths must fit into 
the box. At the wall’s the probability must be zero 
which means also the wave function must be zero.
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5.42 What is the minimum uncertainty in the speed of a 

bacterium…………….
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5.36  some physics theories indicate a lifetime of the proton of 10^36 

years. What does such a prediction say about the energy of a proton??



13) The energies of the excited states of a particle in a 

infinite square well are exact and have no energy 

uncertainty. What does this suggest about the lifetime of a 

particle in those excited states?

a) The particle stays in its excited state forever.

b) The particle decays immediately.

c) The particle decays with an exponential decay law.

d) The lifetime depends on whether the particle is an 

electron or a proton. 

Clicker - Questions



15) An electron is trapped in a one-dimensional region of 

length 1x10-10m. How much energy must be supplied to 

excite the electron from the ground state to the second 

excited state? 

a) 38 eV

b) 114 eV  

c) 304 eV 

d) 342 eV  

Clicker - Questions




