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CHAPTER 7

The Hydrogen Atom

This spherical system has very high symmetry causing 

very high degeneracy of the wavefunctions



◼ The wave function must be a function of all three spatial coordinates. 

We begin with the conservation of energy

◼ Multiply this by the wave function to get

◼ Now consider momentum as an operator acting on the wave 

function. In this case, the operator must act twice on each dimension. 

Given:

◼ The three dimensional Schrödinger wave equation is

6.5: Three-Dimensional Infinite-Potential Well

Laplace operator



Particle in3-D box
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Problem6.26

Find the energies of the second, third, fourth, and fifth levels for the three dimensional cubical box. Which 

energy levels are degenerate?

A given  state is degenerate when there is more 

than one wave function for a given energy



Degeneracy

◼ Analysis of the Schrödinger wave equation in three dimensions 

introduces three quantum numbers that quantize the energy. 

◼ A quantum state is degenerate when there is more than one wave 

function for a given energy.

◼ Degeneracy results from particular properties of the potential energy 

function that describes the system. A perturbation of the potential 

energy can remove the degeneracy.

◼ Use the Schrödinger wave equation for molecules

◼ We can remove the degeneracy by applying a magnetic field to the 

atom or molecule



6.6: Simple Harmonic Oscillator
◼ Simple harmonic oscillators describe many physical situations: springs, 

diatomic molecules and atomic lattices.  

◼ Consider the Taylor expansion of a potential function:

Redefining the minimum potential and the zero potential, we have

Substituting this into the wave equation:

Let and which yields .

The pendulum is a simple harmonic oscillator , Foucault pendulum(see miscellaneous on SIBOR )
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Parabolic Potential Well

◼ If the lowest energy level is zero, this violates the uncertainty principle.

◼ The wave function solutions are where Hn(x) are Hermite 

polynomials of order n.

◼ In contrast to the particle in a box, where the oscillatory wave function is a 

sinusoidal curve, in this case the oscillatory behavior is due to the polynomial, 

which dominates at small x. The exponential tail is provided by the Gaussian 

function, which dominates at large x.



Analysis of the Parabolic Potential Well

◼ The energy levels are given by

◼ The zero point energy is called the Heisenberg 

limit:

◼ Classically, the probability of finding the mass is 

greatest at the ends of motion and smallest at the 

center (that is, proportional to the amount of time 

the mass spends at each position).

◼ Contrary to the classical one, the largest probability 

for this lowest energy state is for the particle to be 

at the center.
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7.1: Application of the Schrödinger 

Equation to the Hydrogen Atom

◼ The approximation of the potential energy of the electron-proton 
system is electrostatic: 

◼ Rewrite the three-dimensional time-independent Schrödinger 
Equation.

For Hydrogen-like atoms (He+ or Li++)

◼ Replace e2 with Ze2 (Z is the atomic number)

◼ Use appropriate reduced mass μ



Application of the Schrödinger Equation

◼ The potential (central force) V(r) depends on the distance r

between the proton and electron.

Transform to spherical polar 

coordinates because of the 

radial symmetry.

Insert the Coulomb potential 

into the transformed 

Schrödinger equation.



Application of the Schrödinger Equation

◼ The wave function ψ is a function of r, θ,   .

Equation is separable.

Solution may be a product of three functions.

◼ We can separate Equation 7.3 into three separate differential 

equations, each depending on one coordinate: r, θ, or    .

Equation 7.3

Divide and conquer !!



7.2: Solution of the Schrödinger Equation 

for Hydrogen

◼ Substitute Eq (7.4) into Eq (7.3) and separate the resulting 

equation into three equations: R(r), f(θ), and g(   ).

Separation of Variables

◼ The derivatives from Eq (7.4) 

◼ Substitute them into Eq (7.3)

◼ Multiply both sides of Eq (7.6) by r2 sin2 θ / Rfg



Solution of the Schrödinger Equation

◼ Only r and θ appear on the left side and only     appears on the right 

side of Eq (7.7)

◼ The left side of the equation cannot change as     changes.

◼ The right side cannot change with either r or θ.

◼ Each side needs to be equal to a constant for the equation to be true.

Set the constant −mℓ
2 equal to the right side of Eq (7.7) 

◼ It is convenient to choose a solution to be        .

-------- azimuthal equation



Solution of the Schrödinger Equation

◼ satisfies Eq (7.8) for any value of mℓ.

◼ The solution be single valued in order to have a valid solution for 

any    , which is

◼ mℓ to be zero or an integer (positive or negative) for this to be 

true.

◼ If Eq (7.8) were positive, the solution would not be realized.

◼ Set the left side of Eq (7.7) equal to −mℓ
2 and rearrange it. 

◼ Everything depends on r on the left side and θ on the right side of 

the equation.



Solution of the Schrödinger Equation

◼ Set each side of Eq (7.9) equal to constant ℓ(ℓ + 1).

◼ Schrödinger equation has been separated into three ordinary 

second-order differential equations [Eq (7.8), (7.10), and (7.11)], 

each containing only one variable.

----Radial equation

----Angular equation



Solution of the Radial Equation

◼ The radial equation is called the associated Laguerre equation 

and the solutions R that satisfy the appropriate boundary 

conditions are called associated Laguerre functions.

◼ Assume the ground state has ℓ = 0 and this requires mℓ = 0.

Eq (7.10) becomes

◼ The derivative of          yields two terms. 

Write those terms and insert Eq (7.1)



Solution of the Radial Equation
◼ Try a solution

A is a normalization constant.

a0 is a constant with the dimension of length.

Take derivatives of R and insert them into Eq (7.13).

◼ To satisfy Eq (7.14) for any r is for each of the two expressions in 

parentheses to be zero.

Set the second parentheses equal to zero and solve for a0.

Set the first parentheses equal to zero and solve for E.

Both equal to the Bohr result



Quantum Numbers

◼ The appropriate boundary conditions to Eq (7.10) and (7.11) 

leads to the following restrictions on the quantum numbers ℓ

and mℓ:

❑ ℓ = 0, 1, 2, 3, . . .

❑ mℓ = −ℓ, −ℓ + 1, . . . , −2, −1, 0, 1, 2, . ℓ . , ℓ − 1, ℓ

❑ |mℓ| ≤ ℓ and ℓ < 0.

◼ The predicted energy level is
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Problem7.8

The wave function  for the ground state of hydrogen is given by 

100(r,,) = A e-r/ao

Find the constant A that will normalize this wave function over all space.



Hydrogen Atom Radial Wave Functions

◼ First few radial wave functions Rnℓ

◼ Subscripts on R specify the values of n and ℓ



Solution of the Angular and Azimuthal 

Equations

◼ The solutions for Eq (7.8) are

◼ Solutions to the angular and azimuthal equations are linked 

because both have mℓ

◼ Group these solutions together into functions

---- spherical harmonics



Normalized Spherical Harmonics



Solution of the Angular and Azimuthal 

Equations

◼ The radial wave function R and the spherical harmonics Y

determine the probability density for the various quantum 

states. The total wave function depends on n, ℓ, 

and mℓ. The wave function becomes



7.3: Quantum Numbers

The three quantum numbers:

❑ n Principal quantum number

❑ ℓ Orbital angular momentum quantum number

❑ mℓ Magnetic quantum number

The boundary conditions:

❑ n = 1, 2, 3, 4, . . . Integer

❑ ℓ = 0, 1, 2, 3, . . . , n − 1 Integer

❑ mℓ = −ℓ, −ℓ + 1, . . . , 0, 1, . . . , ℓ − 1, ℓ Integer

The restrictions for quantum numbers:

❑ n > 0

❑ ℓ < n

❑ |mℓ| ≤ ℓ



1) For what levels in the hydrogen atom will we not find 

l=2 states?? 

a) n = 4, 5

b) n = 3, 4

c) n = 2, 1 

d) n = 5, 6

Clicker - Questions



2) Which of the following states of the hydrogen atom is 

allowed? 

a) n = 6, l = 2, ml = 0

b) n = 2, l = 2, ml = 0

c) n = 5, l = 2, ml = 3 

d) n = 1, l = 2, ml = 1

Clicker - Questions



1. It is required that 5 and m  .   

4: 0, 1, 2, 3, 4m= =     ;  3: 0, 1, 2, 3m= =    ;  

2: 0, 1, 2m= =     1: 0, 1 m= =    0: 0m= =  

Problem7.11

List all quantum numbers (n,l,ml) for the n=5 level in atomic hydrogen.



Principal Quantum Number n

◼ It results from the solution of R(r) in Eq (7.4) because R(r) includes 

the potential energy V(r).

The result for this quantized energy is

◼ The negative means the energy E indicates that the electron and 

proton are bound together.



Orbital Angular Momentum Quantum 

Number ℓ

◼ It is associated with the R(r) and f(θ) parts of the wave function. 

◼ Classically, the orbital angular momentum with L = 

mvorbitalr. 

◼ ℓ is related to L by .

◼ In an ℓ = 0 state, .

It disagrees with Bohr’s semi-classical “planetary” model of 

electrons orbiting a nucleus L = nħ.



Orbital Angular Momentum Quantum 

Number ℓ

◼ A certain energy level is degenerate with respect to ℓ when the 

energy is independent of ℓ.

◼ Use letter names for the various ℓ values

❑ ℓ = 0 1 2 3 4 5 . . .

❑ Letter = s p d f g h . . .

◼ Atomic states are referred to by their n and ℓ

◼ A state with n = 2 and ℓ = 1 is called a 2p state

◼ The boundary conditions require n > ℓ



Uncertainty principle 

for angular momentum



◼ The relationship of L, Lz, ℓ, and 

mℓ for ℓ = 2.

◼ is fixed.

◼ Because Lz is quantized, only 

certain orientations of     are 

possible and this is called space 

quantization.  

Magnetic Quantum Number mℓ

◼ The angle    is a measure of the rotation about the z axis.

◼ The solution for specifies that mℓ is an integer and related to 

the z component of L.



Magnetic Quantum Number mℓ

◼ Quantum mechanics allows     to be quantized along only one 

direction in space. Because of the relation L2 = Lx
2 + Ly

2 + Lz
2 the 

knowledge of a second component would imply a knowledge of the 

third component because we know    .

◼ We expect the average of the angular momentum components 

squared to be

Use a math table for the summation result

Since the sum



Fuzzyness of angular momentum



Honda 600RR

Who races this bike?

Why can anybody race it, if he just 
dares to go fast?

The oval track of the Texas
World Speedway allows speeds
of 250 mph. 





◼ The Dutch physicist Pieter Zeeman showed the spectral lines 

emitted by atoms in a magnetic field split into multiple energy 

levels. It is called the Zeeman effect.

Normal Zeeman effect:

◼ A spectral line is split into three lines.

◼ Consider the atom to behave like a small magnet.

◼ The current loop has a magnetic moment μ = IA and the period T = 

2πr / v.

◼ Think of an electron as an orbiting circular current loop of I = dq / dt

around the nucleus.

◼ where L = mvr is the magnitude of the orbital 

angular momentum

7.4: Magnetic Effects on Atomic Spectra—The 

Normal Zeeman Effect



◼ The angular momentum is aligned with the magnetic moment, and 

the torque between     and     causes a precession of     .

Where μB = eħ / 2m is called a Bohr magneton.

◼ cannot align exactly in the z direction and 

has only certain allowed quantized orientations.

◼ Since there is no magnetic field to 

align them,     point in random 

directions. The dipole has a 

potential energy

The Normal Zeeman Effect



Precession frequency



The Normal Zeeman Effect

◼ The potential energy is quantized due to the magnetic quantum 

number mℓ.

◼ When a magnetic field is applied, the 2p level of atomic hydrogen 

is split into three different energy states with energy difference of 

ΔE = μBB Δmℓ.

mℓ Energy

1 E0 + μBB

0 E0

−1 E0 − μBB





Spectrum of atomic hydrogen



The Normal Zeeman Effect

◼ A transition from 2p to 1s



History of Hydrogen Spectroscopy



Space quantizationin the Stern Gerlach experiment





◼ An atomic beam of particles in the ℓ = 1 state pass through a 

inhomogeneous magnetic field along the z direction.

◼

◼

◼ The mℓ = +1 state will be deflected down, the mℓ = −1 state up, and the 

mℓ = 0 state will be undeflected.

◼ If the space quantization were due to the magnetic quantum number 

mℓ, mℓ states is always odd (2ℓ + 1) and should have produced an odd 

number of lines.

The Normal Zeeman Effect





7.5: Intrinsic Spin

◼ Samuel Goudsmit and George Uhlenbeck in Holland proposed that 

the electron must have an intrinsic angular momentum and 

therefore a magnetic moment.

◼ Paul Ehrenfest showed that the surface of the spinning electron 

should be moving faster than the speed of light!

◼ In order to explain experimental data, Goudsmit and Uhlenbeck 

proposed that the electron must have an intrinsic spin quantum 

number s = ½.



Intrinsic Spin

◼ The spinning electron reacts similarly to the orbiting electron in a 

magnetic field.

◼ We should try to find L, Lz, ℓ, and mℓ. 

◼ The magnetic spin quantum number ms has only two values, 

ms = ±½.

The electron’s spin will be either “up” or 

“down” and can never be spinning with its 

magnetic moment μs exactly along the z axis.

The intrinsic spin angular momentum

vector .



Intrinsic Spin

◼ The magnetic moment is .

◼ The coefficient of is −2μB as with     is a consequence of theory 

of relativity.

◼ The gyromagnetic ratio (ℓ or s).

◼ gℓ = 1 and gs = 2, then

◼ The z component of                               .

◼ In ℓ = 0 state

◼ Apply mℓ and the potential energy becomes

no splitting due to .

there is space quantization due to the 

intrinsic spin.

and



Space quantization of the electron 
spin angular momentum

In the frame of the 
electron there is 

an internal 
magnetic field 
created by the 

orbiting proton= 
doubled splitting

Doublet splitting  due to the 
electron spin magnetic moment



1. For the 4f state n = 4 and 3= . The possible m values are 0, 1, 2,  and 3 with 

1/ 2sm =  for each possible m value. The degeneracy of the 4f state is then (with 2 spin 

states per m ) equal to 2(7) = 14. 

 

Problem7.29

Use all four quantum numbers (n,l.ml,ms) to write down all possible sets of 

quantum numbers for the 4f state of atomic hydrogen. What is the total 

degeneracy?



1. For the 5d state n = 5 and 2= . The possible m values are 0, 1, and 2,  with 

1/ 2sm =   for each possible m value. The degeneracy of the 5d state is then (with 2 spin 

states per m ) equal to 2(5) = 10. 

Problem7.32

Use all four quantum numbers (n,l.ml,ms) to write down all possible sets of 

quantum numbers for the 5d state of atomic hydrogen. What is the total 

degeneracy?



7.6: Energy Levels and Electron Probabilities

◼ For hydrogen, the energy level depends on the principle quantum 

number n.

◼ In ground state an atom cannot emit 

radiation. It can absorb 

electromagnetic radiation, or gain 

energy through inelastic 

bombardment by particles.

Forbidden  transitions:   3P-2P,  3d-2S,4F-3S, 

etc



Selection Rules

◼ We can use the wave functions to calculate transition 

probabilities for the electron to change from one state to another.

Allowed transitions:

◼ Electrons absorbing or emitting photons to change states when 

Δℓ = ±1.

Forbidden transitions:

◼ Other transitions possible but occur with much smaller 

probabilities when Δℓ ≠ ±1.  

Conservation of angular momentum: photon carries one unit of angular momentum. 

The atom changes by one unit of angular momentum in the radiation process



3-D Probability Distribution Functions

◼ We must use wave functions to calculate the probability 

distributions of the electrons.

◼ The “position” of the electron is spread over space and is not 

well defined.

◼ We may use the radial wave function R(r) to calculate radial 

probability distributions of the electron.

◼ The probability of finding the electron in a differential volume 

element dτ is .



3-D Probability Distribution Functions

◼ The differential volume element in spherical polar coordinates is

Therefore,

◼ We are only interested in the radial dependence.

◼ The radial probability density is P(r) = r2|R(r)|2 and it depends 

only on n and l.



Probability distributions in 3D space( as shown before)



Normalizing a hydrogenic wave function



◼ R(r) and P(r) for the 

lowest-lying states of 

the hydrogen atom

Radial Probability Distribution Functions

n=1

n=2

n=3



3-D Probability Distribution Functions

◼ The probability density for the hydrogen atom for three different 

electron states













Space Station



The SPHERES Tether Slosh investigation combines fluid dynamics equipment with 

robotic capabilities aboard the station. In space, the fuels used by spacecraft can 

slosh around in unpredictable ways making space maneuvers difficult. This 

investigation uses two SPHERES robots tethered to a fluid-filled container covered in 

sensors to test strategies for safely steering spacecraft such as dead satellites that 

might still have fuel in the tank.

https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7381


Selfie of the Mars Rover in a Dust Storm



1. If we determine the thermal energy that equals the energy required for the spin-flip 

transition, we have ( )6 53 3
5.9 10 eV 8.617 10 eV/K

2 2
kT T− − = =  . This gives 

0.0456 KT = . 

Problem 7.31

The 21-cm line transition of atomic hydrogen results from a spin-flip transition for 

the electron in the parallel state of the n=1 state. What temperature in interstellar 

space gives a hydrogen atom enough energy (5.9x10-6eV) to excite another 

hydrogen atom in a collision?





Integrate by substitution u=2x

du/dx=2     dx=du/2


