CHAPTER 7
The Hydrogen Atom

m 7.1 Application of the Schrodinger Equation to the
Hydrogen Atom

m 7.2 Solution of the Schrddinger Equation for Hydrogen

= 7.3 Quantum Numbers

= 7.4 Magnetic Effects on Atomic Spectra — The Normal
Zeeman Effect

This spherical system has very high symmetry causing
very high degeneracy of the wavefunctions




6.5: Three-Dimensional Infinite-Potential Well

= The wave function must be a function of all three spatial coordinates.

2
We begin with the conservationofenergy p—x +v =2 v

= Multiply this by the wave function to get 2m
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= Now consider momentum as an operator acting on the wave
function. In this case, the operator must act twice on each dimension.
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= The three dimensional Schrodinger wave equation is
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Consider a free particle inside a box with lengths ;. L,, and
Ly along the x, y, and z axes, respectively, as shown in Figure
f.6. The particle is constrained to be inside the box. Find
the wave functions and energies. Then find the ground-
state energy and wave function and the energy of the first
excited state for a cube of sides I

Strategy We employ some of the same strategies to solve
this problem as we used for the one-dimensional case. First,
because we are considering the walls of the box to be abso-
lutely closed, they are infinite potential barriers, and the
wave function ¢ must be zero at the walls and beyond. We
expect to see standing waves similar to Equation (6.31).

But how should we write the wave function so as to
properly include the x, y, and z dependence of the wave
function? In this case the mathematics will follow from the
physics. The particle is free within the box. Therefore, the
x-, y-, and z-dependent parts of the wave function must be
independent of each other. Inside the box V = 0, so the
wave equation we must solve is

_E?‘!iﬁ, — E!P.

6.46
om (6.46)

It is therefore reasonable to try a wave function of the form
W(x, v, z) = Asin(k x)sin(ky)sin(kyz) (6.47)

where A is a normalization constant. The quantities k; (i =
1, 2, 3) are determined by applying the appropriate bound-
ary conditions. To find the energies, we substitute the wave
function into the Schradinger equation and solve for £

Solution The condition that = 0 at x = L, requires that
kL; = nyw or k; = nyar/ L. The values for the k; are
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where n;, n:, and n; are integers. Not surprisingly, we have
found that in three dimensions, it is necessary to use three
quantum numbers to describe the physical state.

Figure 6.6 A three-dimensional box that contains a free parti-
cle. The poteniial is infinite outside the box, so the particle is con-
strained o be inside the box.

In order to find the energies using Equation (6.43), we
first need to take the appropriate derivatives of the wave
function. We do this first for the variable x.

% = %[.ﬁl sin(k, x)sin{koy)sin(k4z) |
= kA cos(k x)sin(kyy)sin( ksz)

e 8 : ,
Pl -ﬁ"x[hlA cos(kyx)sin(k,y)sin(ksz) |
= —(k; )*A sin(k;x)sin(kyy)sin(k5z)

= ki

The derivatives for y and z are similar, and Equation (6.43)
becomes

fi? .
o (bt b3+ k) = Ey
This gives
ﬁZ 5 ¥
E= ﬁ[kr + ki + k)

We substitute the values of & from Equation (6.48) in this
equation to obtain

E=L#(H_L+”z+ﬁ)
2m \L} L} L}

(6.49)

_Particle in3-D box



Problem6.26

Find the energies of the second, third, fourth, and fifth levels for the three dimensional cubical box. Which
energy levels are degenerate?

A given state Is degenerate when there is more
than one wave function for a given energy

72'27/22 7z_2h2 .
E= omL2 (nf +N; + ”5) =E, (nf +n; + n§) where E, = ol Then the second, third, fourth,

and fifth levels are

E,=(2°+1°+1*)E,=6E,  (degenerate)
= (22 492 +12) E, =9E, (degenerate)
=(3+1°+1°)E, =11E,  (degenerate)
s =(2°+2°+2°)E, =12E,  (not degenerate)

m m [m
I



Degeneracy

= Analysis of the Schrdodinger wave equation in three dimensions
Introduces three quantum numbers that quantize the energy.

= A quantum state is degenerate when there is more than one wave
function for a given energy.

= Degeneracy results from particular properties of the potential energy
function that describes the system. A perturbation of the potential
energy can remove the degeneracy.

m  Use the Schrddinger wave equation for molecules

s  We can remove the degeneracy by applying a magnetic field to the
atom or molecule




6.6: Simple Harmonic Oscillator

= Simple harmonic oscillators describe many physical situations: springs,

diatomic molecules and atomic lattices.
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Consider the Taylor expansion of a potential function:

Vix)=V,+V(x— x0)+ V,(x— xo) +.
Redefining the minimum potentlal and thé zero potentlal we have

V(x)=3Va(x—xp)°
Substituting this into the wave equatlon

d? 2m Kx? 2mE  mxx?

Diatomic
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The pendulum is a simple harmonic oscillator , Foucault pendulum(see miscellaneous on SIBOR )



The mechanical energy E is constant.

(a) The potential energy U and total energy E
of an object in SHM as a function of x position

© 2016 Pearson Education, Inc.
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(b) The same graph as in (a), showing
kinetic energy K as well



Parabolic Potential Well
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= If the lowest energy level is zero, this violates the uncertainty principle.

= The wave function solutions are y, = H, (x)e‘””‘zl2 where H, (x) are Hermite
polynomials of order n.

= In contrast to the particle in a box, where the oscillatory wave function is a
sinusoidal curve, in this case the oscillatory behavior is due to the polynomial,
which dominates at small x. The exponential tail is provided by the Gaussian
function, which dominates at large x.




‘ Analysis of the Parabolic Potential Well

V(x) Wave functions i 2
) e
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! = The energy levels are given by
E,=@n+)hNK/m=(n+)ho

m The zero point energy is called the Heisenberg

limit: 1
2

m Classically, the probability of finding the mass is

greatest at the ends of motion and smallest at the

center (that is, proportional to the amount of time
the mass spends at each position).

m  Contrary to the classical one, the largest probability
for this lowest energy state is for the particle to be
at the center.
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= 7.3 Quantum Numbers

= 7.4 Magnetic Effects on Atomic Spectra — The Normal
Zeeman Effect




Table 6.2 Common Observables and
Associated Operators

Observable Symbol Associated Operator
Position X X
h o
Momentum p o
10X
Potential energy U U(x)
Kineti K Ll
netic ener - :
o 2m  9x°
i
Hamiltonian H — — + U(x)
2m  0x

Total energy E ih—

© 2005 Brooks/Cole - Thomson



7.1: Application of the Schrodinger
Equation to the Hydrogen Atom

= The approximation of the potential energy of the electron-proton

system is electrostatic:

82

V(r)=-
) dreyr

= Rewrite the three-dimensional time-independent Schrddinger
Equation.

R 1 | Py(xyn) Oy(xy.2) Ow(x,y.2)
2my(x,y,z) ox” oy’ oz°
For Hydrogen-like atoms (He™* or Li**)

= Replace e? with Ze? (Z is the atomic number)
= Use appropriate reduced mass u

}zE—V&)




Application of the Schrodinger Equation

= The potential (central force) V(r) depends on the distance r
between the proton and electron.

w2 R

Il I

rsin 6 cos ¢
rsin 0 sin
rcos 6

¢

r \/x2 + y2 + 22

6 = cos™! % (Polar angle)

¢ = tan™! L (Azimuthal angle)
x g-’

1 0

s

72 sin 0 60

(sin 0

Transform to spherical polar
coordinates because of the
radial symmetry.

Insert the Coulomb potential
Into the transformed
Schrodinger equation.

U

1 &%y 2u

)+

+ ZE(E-V)w =0
r*sin” @ o¢” hz( W




Application of the Schrodinger Equation

= The wave function y is a function of r, 6, @
— Equation is separable.
— Solution may be a product of three functions.

— y(r.0.9)=R(")[(0)g(#) Eauaion7

= We can separate Equation 7.3 into three separate differential
equations, each depending on one coordinate: r, 6, or ¢

Divide and conquer !!




7.2: Solution of the Schrodinger Equation
for Hydrogen

= Substitute Eq (7.4) into Eq (7.3) and separate the resulting
eqguation into three equations: R(r), f(0), and g(¢).

Separation of Variables
= The derivatives from Eq (7.4)
2 2
oy . OR 6—V/:R of 61/2/:Rf6_g2
or or 00 00 0¢ ¢
= Substitute them into Eq (7.3)
2
]fga(rzaR)+ Rg & ( afj 2Rf o’g 2,u(E VRS =0
r2or\" or) r’sin0o0 00) rsin®0o4* h°
= Multiply both sides of Eq (7.6) by r? sin? 6 / Rfg

= 5 2
_sin"0 6(r26RJ 2'ur sin” O(E — V)—Smga( afj 167%
R ol or) # 7 00\ 60) gog




Solution of the Schrodinger Equation

= Only r and 6 appear on the left side and only ¢ appears on the right
side of Eq (7.7)

= The left side of the equation cannot change as ¢ changes.
= The right side cannot change with either r or 6.

= Each side needs to be equal to a constant for the equation to be true.
Set the constant -m,? equal to the right side of Eq (7.7)

d752 =My g -------- azimuthal equation
= Itis convenient to choose a solution to be ™.




Solution of the Schrodinger Equation

e™? satisfies Eq (7.8) for any value of m,.

The solution be single valued in order to have a valid solution for
any @, which is g(p)=g(¢+2rx)

g(p=0)=g(¢=27) —> e’ = ez”fme
m, to be zero or an integer (positive or negative) for this to be
true.

If Eq (7.8) were positive, the solution would not be realized.

Set the left side of Eq (7.7) equal to -m? and rearrange it.

m,?
1 6(r26Rj 2;1; (- V)— 1 ( . 6fj
Ror\  or h sin’ 0 f sin@ 060 00

Everything depends on r on the left side and 6 on the right side of
the equation.




‘ Solution of the Schrodinger Equation

= Set each side of Eq (7.9) equal to constant £({ + 1).

2
12 d(rzdR) 24 FE— V—h e(ﬁzl) R =0 ----Radial equation
redr dr h? 2u r

2
Li(smgdf) £(0+1)— e’ /=0 ----Angular equation
sin@ do do sin” @

= Schrddinger equation has been separated into three ordinary
second-order differential equations [Eq (7.8), (7.10), and (7.11)],
each containing only one variable.




Solution of the Radial Equation

= The radial equation is called the associated Laguerre equation
and the solutions R that satisfy the appropriate boundary
conditions are called associated Laguerre functions.

= Assume the ground state has £ = 0 and this requires m, = 0.
Eq (7.10) becomes

ld(rzdR

r—2 ar dr

= The derivative of rZZR yields two terms.
v

Write those terms and insert Eq (7.1)

2 2
d’R_2dR 2;;(E+ e jR:O

B
dr’ rdr # dreyr

2
j+h’2‘(E—V)R=0




Solution of the Radial Equation

—r/ ay

= Try a solution R = Ae
A Is a normalization constant.
a, Is a constant with the dimension of length.
Take derivatives of R and insert them into Eq (7.13).

1 2 2ue’ 2 )1
T étE + £ >~ —|-=0
a,” h dreh™ ay )r
= To satisfy Eq (7.14) for any r is for each of the two expressions in
parentheses to be zero.
Set the second parentheses equal to zero and solve for a,,.
4rsyh’
ao = 5
ue
Set the first parentheses equal to zero and solve for E.
2
E=- h 5 =~k
2ua,
Both equal to the Bohr resuit




‘ Quantum Numbers

= The appropriate boundary conditions to Eq (7.10) and (7.11)
leads to the following restrictions on the quantum numbers {

and m;;
o £=0,1,2,3,...
a m=-8-t+1,..., -2,-1,0,1,2,.2.,8-1,¢

a |my| sfand£<O0.

= The predicted energy level is




Problem7.8
The wave function ¥ for the ground state of hydrogen is given by
¥100(r9,0) = A el

Find the constant A that will normalize this wave function over all space.

—2r/a,

1. The wave function given is yy,, (r,6,4)= Ae™"® soy y is given by y,q, v, = A’e
To normalize the wave function, compute the triple integral over all space

mw*wdv _ AZIOZE'[:'[: r’sin@e*"*drdddg . The ¢ integral yields 27 , and the 8

integral yields 2. This leaves .[” w ydV = 4ﬂAzjow (e dr = Az A — 2 — rad A’

1

This integral must equal 1 due to normalization which leads to za A’ =1so A=



Hydrogen Atom Radial Wave Functions

= First few radial wave functions R,

/7.1 Hydrogen Atom Radial Wave Functions
n e Rn((r)
1 0 2% 9[’/““
(a0)”
—r/2
r e
9 0 9— — .
( ao>(2a e
r e—r/?ao
2 1 —
a, \/?_)(200)3/2
1 2 ¥ 2 ) _
3 0 —— 2718 +2 . |&"
(a)** 81 3( ) ) ‘
1 1 7N i
S 1 — 66— — | — —1/3a,
(ag)?* 81\/6( do) floe
5 9 1 4 r /34

(@)% 81V30 4’

= Subscripts on R specify the values of n and {




Solution of the Angular and Azimuthal
Equations

= The solutions for Eq (7.8) are e™? ore M

= Solutions to the angular and azimuthal equations are linked
because both have m,

= Group these solutions together into functions

Y(0,0)= f(0)g(d) ---- spherical harmonics




‘ Normalized Spherical Harmonics

7.2 Normalized Spherical Harmonics Y(6, ¢)

e m(.’ I’emg
PAVZ
1 0 l\/'g— 0
o\ 7 <8
1 +1 _1\ / L
+ F—+[=—sin
2N 2w
18D
2 0 Zw/;(?»cosQO—l)
2 s | _1\115 in @ cos 6 ¢
o F—y[/——sinfcosf e
2N 27
I 15 ;
2 2 1 ‘%Sin2 Ge??
17
3 0 1 ;(5 cos® 6 — 3 cos 0)
1 1l -
3 uic] | I—ﬁQ—sin 6(5 cos>0 — 1) ¢
8NV &
1 /105 .
3 nsiy — =sin*ficos d ¢
4N 27
3 +3 =L 1 g
8N m




Solution of the Angular and Azimuthal
Equations

= The radial wave function R and the spherical harmonics Y
determine the probability density for the various quantum
states. The total wave function w(7,0,¢) depends on n, ¢,
and m,. The wave function becomes

V/néme (ra 97 ¢) — Rnﬁ (r)YEmg (97 ¢)




‘ 7.3: Quantum Numbers

The three quantum numbers:

o on Principal quantum number
o { Orbital angular momentum quantum number
o m, Magnetic quantum number

The boundary conditions:

o n=1,23,4,... Integer

o £=0,1,2,3,...,n-1 Integer

o m=-¢-t+1,...,0,1,...,{-1,¢ Integer
The restrictions for qguantum numbers:

o n>0

o £<n




Chicker - ‘de.s‘tz'on.r

1) For what levels in the hydrogen atom will we not find
|=2 states??

a)n=4,5
b)n=3,4
c)n=2,1

dn=5,6



Chicker - ‘de.s‘tz'on.r

2) Which of the following states of the hydrogen atom is
allowed?

ayn=6,1=2,m =0
b)n=2,1=2,m =0
c)n=51=2,m =3

dn=11=2m=1



Problem7.11
List all guantum numbers (n,l,m) for the n=5 level in atomic hydrogen.

1. ltis required that ¢ <5and |m,|</.
(=24 m, =0,+1 +2, 43 +4; /=3 m, =0,112,3;

(=2:m, =011, +2 (=1:m,=0,1 {=0:m, =0



Principal Quantum Number n

= It results from the solution of R(r) in Eq (7.4) because R(r) includes
the potential energy V(r).

The result for this quantized energy is

o) 2
E =K € 1__&
" 2 \4me,h ) nt n?

= The negative means the energy E indicates that the electron and
proton are bound together.




Orbital Angular Momentum Quantum
Number ¢

m Itis associated with the R(r) and f(6) parts of the wave function.

= Classically, the orbital angular momentum L= Fxpwith L=
mVorbitalr'

m lisrelatedto L by L =./4(£+]1)h.

= Inan{=0state, L=+0(1)a=0

It disagrees with Bohr’ s semi-classical “planetary” model of
electrons orbiting a nucleus L = nh.




Orbital Angular Momentum Quantum
Number ¢

= A certain energy level is degenerate with respect to £ when the
energy is independent of {.

m Use letter names for the various { values
o {= 0 1 2 3 4 5...
o Letter= s p d f g h...

= Atomic states are referred to by their n and ¢{
= Astate withn=2and{=1is called a 2p state
= The boundary conditions require n > {




Uncertainty principle
for angular momentum

Figure 8.6 The angular mo-
mentum L of an orbiting parti-
cle is perpendicular to the
plane of the orbit. If the direc-
tion of L were known precisely,
both the coordinate and mo-
mentum in the direction per-
pendicular to the orbit would
be known, in violation of the
uncertainty principle.




Magnetic Quantum Number m,

= The angle ¢ is a measure of the rotation about the z axis.
= The solution for g(#) specifies that m, is an integer and related to

the z component of L. i
A
L =mh
= The relationship of L, L,, {, and ) |R—— —
m, for £ = 2.

s L=.\J0(¢+)h=+J6n is fixed.

Rp--fmmmm me =1
m Because L, is quantized, only

——_ L=\t +Dk

certain orientations of L are 0 > > =\67
. . . my —
possible and this is called space ‘
guantization. o | . SR = =1
L b

Lol D= T
(- m—% ————————— b 5




Magnetic Quantum Number m,

= Quantum mechanics allows L to be quantized along only one
direction in space. Because of the relation L2 = L,2 + L 2 + L,? the
knowledge of a second component would imply a knowledge of the
third component because we know L

m We expect the average of the anzqular momentum components

squared to be (L,”)= <Ly2> =(L,’%)

(L) =3(L>)= 2“1 Z m,2h* = 4(¢ +1)h>

mg =—f

|
Since the sum Zl =3+ DEE+D

i=—{

Use a math table for the summation result




Fuzzyness of angular momentum
,Wy(ﬁckaaﬂ a/wa,&zuz%.‘ b 4 3%'»(@0%‘12 e lc)

),-—Oiou(-’lt’“z -
‘'t heel

P

~

(a) (b)

Figure 8.7 (a) The allowed projections of the orbital angular momentum for the
case € = 2. (b) From a three-dimensional perspective, the orbital angular momentum
vector L lies on the surface of a cone. The fuzzy character of L, and L, is depicted by
allowing L to precess about the z-axis, so that L, and L, change continually while L.
maintains the fixed value mh. |




Honda 600RR

Who races this bike?

Why can anybody race it, if he just
dares to go fast?

The oval track of the Texas
World Speedway allows speeds
of 250 mph.







7.4. Magnetic Effects on Atomic Spectra—The
Normal Zeeman Effect

= The Dutch physicist Pieter Zeeman showed the spectral lines
emitted by atoms in a magnetic field split into multiple energy
levels. It is called the Zeeman effect.

Normal Zeeman effect:
= A spectral line is split into three lines.
= Consider the atom to behave like a small magnet.

= The current loop has a magnetic moment u = IA and the period T =
2mr [ v.

= Think of an electron as an orbiting circular current loop of | = dq / dt
around the nucleus.

= - __% 17 where L = mvris the magnitude of the orbital
2m  angular momentum




‘ The Normal Zeeman Effect

L
'3_\ = Since there is no magnetic field to
align them, Z point in random
C|> Proton _/  directions. The dipole has a
S o = potential energy
\ ’ =
A Vg=—p-B

= The angular momentum is aligned with the magnetic moment, and
the torque between f and J causes a precession of Z .

en
H, =My =—Hph,
2m

Where ug = eh/2m is called a Bohr magneton.

= A cannot align exactly in the z direction and

has only certain allowed quantized orientations. H= _”Bz/h




Precession frequency

n EXAMPLE 7.5

Determine the precessional frequency of an atom having
magnetic moment i in an external magnetic field B. This
precession is known as the Larmor precession.

Stra We have already seen that the torque 7 is equal
to i X B, but we also know from classical mechanics that the
torque is dL/dt. The torque in Figure 7.5 is perpendicular to
i, L, and B and is out of the page. This must also be the
direction of the change in momentum dL as seen in Figure
7.5. Thus L and i precess about the magnetic field. The
Larmor frequency w, is given by dé/dt.

Solution The magnitude of dL is given by L sin 8 dé (see
Figure 7.5), so w, is given by
dd 1 dL

LT T Lein0 &t

(7.29)

We now insert the magnitude of L = 2mu/e from Equation
(7.26). The value of dL/dt, the magnitude of i X B, can be
determined from Figure 7.5 to be uB sin 8. Equation (7.29)
becomes

Figure 7.5 An atom having magnetic moment il feels a torque

? = it X B due 10 an external magnetic field B. This torque must
also be equal to dL/dt. The vectors i and L are antiparallel, so the
vector dl./dl must be perpendicular to i, 3. and L. As shown in
the figure, dL/dt requires both i and L to precess (angle ¢) about
the magnetic field B.




The Normal Zeeman Effect

= The potential energy is quantized due to the magnetic quantum
number m,.

Vg =—#,B =+pym,Bb

=  When a magnetic field is applied, the 2p level of atomic hydrogen
IS split into three different energy states with energy difference of
AE = ugB Am,.

(=1 il
m, Energy 1
A
EO+:uBB i £=1 Y Ab_:U“BB
n = 2 A . 0
0 E, | AE i
B S B=0 B= By




u CONCEPTUAL EXAMPLE 7.6

What is the lowest nf state in the hydrogen atom that hasa  Solution We want to find the lowest energy nf state that

degeneracy of 57 has five mq states. This is true for a £ = 2 state, because 2 +
1 = 5. The lowest possible £ = 2 state will be 3d, because
n > { is required.

u EXAMPLE 7.7

What is the value of the Bohr magneton? Use that value to  Solution The Bohr magneton is determined to be
calculate the energy difference between the m¢ = 0 and m; P

= +1 components in the 2p state of atomic hydrogen placed Mg = =
in an external field of 2.00 T. 2m

(1.602 x 107" C)(1.055 x 10 ™ ]-s)
Strategy To find d’\e Bohr magneton we insert the known - 2(9.11 X 10~ kg)
values of e, fi, and m into the equation for ug [see text after ,
Equation (7.28)]. The energy difference is determined pg =927 X 10*]/T (7.32)
from Equation (7.31).

UE =p, B r, — 3,25+ /O_ZQA-)JJT =/ /éxw#e,u




Spectrum of atomic hydrogen

E(eV)
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Figure 8.8 Encrgylevel diagram of atomic hydrogen. Allowed photon transitions are
those obeying the selection rule A€ = 1. The 3p— 2p vansition (A€ = 0) is said o
be forbidden, though it may still occur (but only rarely).



The Normal Zeeman Effect

= A transition from2pto1ls !

ls

ol

(b)




History of Hydrogen Spectroscopy
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‘ Space quantizationin the Stern Gerlach experiment

Beam of
silver atoms

? Collector plate

Inhomogencous
magnetic field

Classical
Glass pattern
Oven ~ plate Actual

(a) pattern O

(c)

8(22) > B(Z|)

(b)

Figure 9.7 The Stern-Gerlach experiment to detect space quantization. (a) A beam
of silver atoms is passed through a nonuniform magnetic field and detected on a
collector plate. (b) The atoms, with their magnetic moment, are equivalent to tiny bar
magnets. In a nonuniform field, each atomic magnet experiences a net force that
depends on its orientation. (¢) If any moment orientation were possible, a continuous
fanning of the beam would be seen at the collector. For space quantization, the
fanning is replaced by a set of discrete lines, one for each distinct moment orientation
present in the beam.
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The Normal Zeeman Effect

An atomic beam of particles in the £ = 1 state pass through a
Inhomogeneous maanetic field alona the z direction.

. Ycreen
78
‘ ‘ South \ — mp = —1
me|= 0
[—
Atomic atoms 4 \ \ /
beam = Bsiais
oven f‘.n ‘l‘l A '
e ) A
B W) |\

}

Vo =—u

F =—(dV,/dz)=u, (dB/dz)

The m, = +1 state will be deflected down, the m, = -1 state up, and the
m, = O state will be undeflected.

If the space quantization were due to the magnetic quantum number
m,, m, states is always odd (2¢ + 1) and should have produced an odd
number of lines.

Stem Ferlach SLay ow\n?-yywl?sf



n EXAMPLE 7.8

In 1927 T. E. Phipps and J. B. Taylor of the University of
Illinois reported an important experiment similar to the
Stern-Gerlach experiment but using hydrogen atoms in-
stead of silver. This was done because hydrogen is the sim-
plest atom, and the separation of the atomic beam in the
inhomogenecous magnetic ficld would allow a clearer inter-
pretation. The atomic hydrogen beam was produced in a
discharge tube having a temperature of 663 K. The highly
collimated beam passed along the x direction through an
inhomogencous field (of length 3 cm) having an average
gradient of 1240 T/m along the z direction. If the magnetic
moment of the hydrogen atom is 1 Bohr magneton, what is
the separation of the atomic beam?

Strategy The force can be found from the potential en-
ergy of Equation (7.31).
av dB
i‘z =4 & = Ky 2
The acceleration of the hydrogen atom along the z direction
is a. = F,/m. The separation of the atom along the z direc-
tion due to this acceleration is d = a.t?/2. The time that the
atom spends within the inhomogencous ficld is ¢t = Ax/v,
where Ax is the length of the inhomogeneous field, and v, is

the constant speed of the atom within the field. The separa-
tion d is therefore found from

_‘_E«): L( 4_8)(,4*)’
i 2(-.‘ S\ EI\ =

We know all the values needed to determine d except the
speed v,, but we do know the temperature of the hydrogen
gas. The average energy of the atoms collimated along the x
direction is sm(v?) = JAT.

Solution We calculate (v?) to be

kT _ 3(1.38 X 10"® J/K)(663 K)
m 1.67 X 10 7 kg

= 1.64 X 10" m?/s’

vi=

The separation d of the one atom is now determined to be
- 1
2(1.67 X 10 ¥ kg)
(0.08m)*
(1.64 X 10" m*/s%)

(9.27 X 10°*'J/T)(1240 T/m)

=019%X 10 *m

AW cwul@, Q2 oVates = CWWSLia"



7.5: Intrinsic Spin

s Samuel Goudsmit and George Uhlenbeck in Holland proposed that
the electron must have an intrinsic angular momentum and
therefore a magnetic moment.

—_— =

= Paul Ehrenfest showed that the surface of the spinning electron
should be moving faster than the speed of light!

- =

= |n order to explain experimental data, Goudsmit and Uhlenbeck
proposed that the electron must have an intrinsic spin quantum
number s = %,




Intrinsic Spin

= The spinning electron reacts similarly to the orbiting electron in a
magnetic field.

= We should try to find L, L, £, and m,.
= The magnetic spin quantum number m¢ has only two values,
m, = £v.

The electron’ s spin will be either “up” or
“down” and can never be spinning with its 2
magnetic moment u, exactly along the z axis.

The intrinsic spin angular momentum T§

veetor m =Js(s+1)h = J3/4n @

(a) (b)




Intrinsic Spin

= The magnetic momentis g, = —(e/m)S, or —2u,S/h.

= The coefficient of S/ is —2ug as with L is a consequence of theory
of relativity.

= The gyromagnetic ratio ({ or s).
= g,=1andg, =2, then

— gl ppL — gsuBS_ - UBS
—_ — = — and _ — =/ —

= The z componentof SisS, =mh==+h/2.
= In{ =0 state — no splitting due to .

there is space quantization due to the
intrinsic spin.
= Apply m, and the potential energy becomes

Vy=—p,-B=+-S-B
m




Space quantization of the electron
spin angular momentum

Spin up

Spin down

Doublet splitting due to the

electron spin magnetic moment

o

/

Figure 7.10 The hydrogen
atom in the frame of reference of
the electron. In this case, the or-
biting proton creates a magnetic
field at the position of the
electron.

In the frame of the
electron there is
an internal
magnetic field
created by the
orbiting proton=
doubled splitting



Problem7.29

Use all four quantum numbers (n,l.m,m,.) to write down all possible sets of
guantum numbers for the 4f state of atomic hydrogen. What is the total
degeneracy?

For the 4f state n = 4 and ¢ =3. The possible m, values are 0,%1,%+2, and £3with
m, =+1/2for each possible m,value. The degeneracy of the 4f state is then (with 2 spin

states per m,) equal to 2(7) = 14.



Problem7.32

Use all four quantum numbers (n,l.m,m,.) to write down all possible sets of
guantum numbers for the 5d state of atomic hydrogen. What is the total
degeneracy?

1. Forthe 5d state n =5and ¢=2. The possible m,values are 0,+1,and £2, with
m, =+1/2 for each possible m,value. The degeneracy of the 5d state is then (with 2 spin
states per m,) equal to 2(5) = 10.



7.6: Energy Levels and Electron Probabilities

= For hydrogen, the energy level depends on the principle guantum

Energy

(eV)
0
—0.8
—1.9

—-3.4

—135.6

number n.
S P G
— (=0 1 2 3 4
4 N\ 74
\ / %Fseries
3
S series”

/Dseries

2

—~—Pseries

In ground state an atom cannot emit
radiation. It can absorb
electromagnetic radiation, or gain
energy through inelastic
bombardment by particles.

Forbidden transitions: 3P-2P, 3d-2S,4F-3S,

etc




Selection Rules

= We can use the wave functions to calculate transition
probabilities for the electron to change from one state to another.

Allowed transitions:

= Electrons absorbing or emitting photons to change states when
Al=+1.

Forbidden transitions:

= Other transitions possible but occur with much smaller
probabilities when Al # = 1.

An = anything
Al =+1
Am, =0, 1

Conservation of angular momentum: photon carries one unit of angular momentum.
The atom changes by one unit of angular momentum in the radiation process



3-D Probabillity Distribution Functions

= We must use wave functions to calculate the probability
distributions of the electrons.

: 1

= The “position” of the electron is spread over space and is not

well defined. .

= We may use the radial wave function R(r) to calculate radial
probability distributions of the electron.

= The probability of finding the electron in a differential volume
elementdtisdP =y *(r,0,9) w(r,0,¢) dr.




3-D Probability Distribution Functions

= The differential volume element in spherical polar coordinates is

dr =r*sin@ dr d6 d¢
Therefore,

P(r) dr =r’R*(r)R() er.: \f(@)\z sin @ d@J‘:” ]g(qﬁ)\z dé

= We are only interested in the radial dependence.
P(r)dr=r’ ]R(r)12 dr

The radial probability density is P(r) = r?|R(r)|? and it depends
only on nand |.

The integrals have been normalized to unity. For the azimuthal part we have
(eimlm)*eim,g@:e—im1@+im1® — 60:1




Probability distributions in 3D space( as shown before)

We are interested in finding the probability P(r) dr of the electron being between
rand r + dr. The differential volume element in spherical polar coordinates is

dr = r*sin 0 dr df d¢

Therefore,

™ 2
P(r) dr = r*R*(r)R(r) drI |f(0))* sin 0 d6 [ \g(b)|* do (7.38)

We are integrating over 6 and ¢, because we are only interested in the radial
dependence. If the integrals over f(#) and g(&) have already been normalized to
unity, the probability of finding the electron between r and r + dr reduces to

Poe(7) dr = r*|Rye(1)|* dr (7.39)

The radial probability density Py is
P (1) = | Rpe(7)|* (7.40)



ormalizing a hydrogenic wave function

n EXAMPLE 7.2

Show that the hydrogen wave function ¢y, is normalized.

Strategy We refer to Equation (6.8) in Chapter 6 where
we normalized the wave function in one dimension. Now we
want to normalize the wave function in three dimensions in
spherical polar coordinates. The normalization condition is

I*:l-,¢-(., dr =] = I¢;|]&2uf2 sin 0 dfdo d¢ (7.18)

where dr = r? sin 0 dr df d¢ is the volume element. We look
up the wave function ¢y, using Tables 7.1 and 7.2.

Y Y
Yo = RyY, = aq \/5(200)3'/7 9 217“" e

Solution We insert the wave function ¢, into Equation
(7.18), insert the integration limits for 7, 6, and ¢, and do
the integration. First we find 3,45,

Lo sint 0

Yoo = 4ma’

where we have combined factors. The normalization condi-
tion from Equation (7.18) becomes

Id&n"’zn'zﬁﬂ@dﬂw dd
l J:.‘ = v
= r'e """drj sin’dOI dd
644”405 0 n n
_ 1 AT
= ]

We have not shown all the steps in the integration, but we
have shown the results of each integration in each of the
square brackets. The integrals needed are in Appendix 3.
The wave function is indeed normalized.




Radial Probability Distribution Functions

Radial wave functions (R,)

2 —
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Radial probability distribution (P,,¢)
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lowest-lying states of
the hydrogen atom

7.1 Hydrogen Atom Radial Wave Functions
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3-D Probabillity Distribution Functions

= The probability density for the hydrogen atom for three different
electron states

n=3
£=2
me'——O



These computer-drawn
graphs represent the
probability to locate the
electron in the n = 8
state of hydrogen for an-
gular momentum quan-
tum number 1 = 2 and

1 = 6; the vertical coor-
dinate at any point gives
the probability to find
the electron in a small
volume element at that
point. The nucleus of the
atom would be at the
center of each graph.




n EXAMPLE 7.11

Find the most probable radius for the electron of a hydro-
gen atom in the Is and 2p states.

Strategy To find the maximum and minimum of a func-
tion we take the derivative of the function with respect to the
variable and set the derivative equal to zero. To find the most
probable radial value we take the derivative of the probability
density P(r) (see Equation (7.39)) with respect to r and set it
equal to zero. We use the R, (1) from Table 7.1.

Solution We use Equation (7.40) for the probability den-
sity for both the 1sand 2p states and find theR,, values from
Table 7.1.

o
Py=—5€"""
ay
14
< 4 P
R 7 e
21 24%5
1s state:
d L 45
—Pp(r)=0= E( ao" r‘)

0= -i,;(—l re+ 2r)e' 2r/ay
a*\ 4

r = a, Most probable radius (7.41)

for 1s state electron

Hydrogen Atom Radial Wave Functions

2p state: 7 ¢ Rulr)
+ 1 0 2l
ipgl(r) = i r 58- '«"'ﬁ = O (aﬂ)/zr 20
dr dr| 24a, ’ ! (- Lk
~1/28y
~ v/ ay K 9 1 L‘—”
- 9 4r‘ - r— B O 1/3(21)/( 7 W i) ~1/3a,
2400 a 3 0 AT e
1 4 T\ e
o : I T G ol
— = 1 A 7P o
& 4r 3 2 TV e

r= 4a, Most probable radius (7.42)

for 2p state electron

Notice that the most probable radii for the 1s and 2p states
agree with the Bohr radii. This occurs only for the largest
possible £ value for each n (see Problem 36).



EXAMPLE 7.12

Calculate the average orbital radius of a 1s electron in the
hydrogen atom.

Strategy To find the average value, we shall find the ex-
pectation value.

Solution The expectation (or average) value of r is (see
Section 6.2)

(r) = Jtlf"'(r. 0, d)rd(r, 0, $) dr = IYP(Y) dr

where we have again integrated over 6 and ¢. We use Equa-
tion (7.39) for the probability density and find the radial
wave function Ry, (7) in Table 7.1.

(r) = I i,e_g""'“’ v dr

gy

We look up this integral in Appendix 3 and determine

- 3
I Pt/ gy 20
x 8
so that
4 3a, 3
(r) = -—Si = —a, For the s state electron
a 8 2

Therefore, the average electron radius in the Is state is
larger than the most probable value, the Bohr radius. We
can see that this result is reasonable by examining the radial
probability distribution for the ls state displayed in Figure
7.12. The maximum (or most probable) value occurs at a,,
but the average is greater than a, because of the shape of
the “tail” of the distribution.
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Space Station




The SPHERES Tether Slosh investigation combines fluid dynamics equipment with
robotic capabilities aboard the station. In space, the fuels used by spacecraft can
slosh around in unpredictable ways making space maneuvers difficult. This
investigation uses two SPHERES robots tethered to a fluid-filled container covered in

sensors to test strategies for safely steering spacecraft such as dead satellites that
might still have fuel in the tank.



https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7381

Selfie of the Mars Rover in a Dust Storm




Problem 7.31

The 21-cm line transition of atomic hydrogen results from a spin-flip transition for
the electron in the parallel state of the n=1 state. What temperature in interstellar
space gives a hydrogen atom enough energy (5.9x10-%eV) to excite another
hydrogen atom in a collision?

1. If we determine the thermal energy that equals the energy required for the spin-flip

transition, we have 5.9x10°eV = g KT = 2(8.617 x107° eV/K)T . This gives

T =0.0456 K.



Table 8.5 Spectroscopic Notation for
Atomic Shells and Subhells

n Shell Symbol { Shell Symbol
1 K 0 S
2 L 1 b
5 M 2 d
4 N 3 f
5 0, 4 g
6 P 5 h

© 2005 Brooks/Cole - Thomson



10, A wave functiion ¥ is A(e” + ¢ ¥) in the region
< x < 1 and zcro clsewhere. Normalize the wave
function and find the probability of the parucle being

(a) between x= 0 and x= nw/8, and (b) between
wix)
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