
The Foucault pendulum in Aggieland

What does it show?? Seeing is believing

T=10 sec   how long is it??

https://sibor.physics.tamu.edu/home/courses/physic

s-222-modern-physics/



THE NOBEL PRIZE IN PHYSICS 2020
Roger Penrose showed that black holes are a direct consequence of the 

general theory of relativity. Reinhard Genzel and Andrea Ghez discovered 

that an invisible and extremely heavy object governs the stars’ orbits at the 

centre of our galaxy, the Milky Way. 
Modern Astrophysics describes the

large-scale structure of the universe, 

and the very nature of space-time 

at the largest and smallest

scales. This modern physics of the 

21st century has been driven by 

the observations of gravitational 

waves emitted during the collision 

of black holes

Penrose 

tiling.
Stephen Hawking at the Schuessler  Ranch



→ Penrose tiling (1974)
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Can one find a set of shapes that can 

cover the plane non-periodically?

• need only 2 tiles (rhombus type) 菱形

Crucial 

marks

• substitution rule



Section 2.1, problem 6

Earth's orbital speed averages 29.78 km/s

=3.47 km/s

https://en.wikipedia.org/wiki/Orbital_speed


Lorentz Transformation Equations 

A more symmetric form:



Derivation of Lorentz Transformations

◼ Use the fixed system K and the moving system K’

◼ At t = 0 the origins and axes of both systems are coincident with 

system K’ moving to the right along the x axis. 

◼ A flashbulb goes off at the origins when t = 0. 

◼ According to postulate 2, the speed of light will be c in both 

systems and the wavefronts observed in both systems must be 

spherical.

K ,K’



Derivation (con’t)

Spherical wavefronts in K: 

Spherical wavefronts in K’: 

Note: these are not preserved in the classical 

transformations with



1) Let x’ =   (x – vt) so that  x =     (x’ + vt’)

2) By Einstein’s first postulate:

3) The wavefront along the x,x’- axis must satisfy:

x = ct and x’ = ct’

4) Thus ct’ =    (ct – vt) and ct =   (ct’ + vt’)

5) Solving the first one above for t’ and substituting 

into the second... 

Derivation (con’t)



Derivation of the Lorentz transformation

The simplest linear transformation
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Principle of relativity

Consider expanding light is spherical, then light travels a distance
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Find transformation for the time t’

We 

had
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The complete Lorentz Transformations

Including the inverse (i.e v replaced with 

–v; and primes interchanged)



S

2.4. # 11. Show that both Eqs. (2.17) and (2.18) reduce 

to the Galilean transformation when v<<c.

Eqs. (2.17)

Eqs. (2.18) 



Remarks

1) If v << c, i.e., β ≈ 0 and     ≈ 1, we see these 

equations reduce to the familiar Galilean 

transformation.

2) Space and time are now not separated.

3) For non-imaginary transformations (which is 

required to have physical sense), the frame 

velocity cannot exceed c.



‘
100

290(Note: values are somewhat 

changed compared to #12)



2.4

#13
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Plugging values for Events 1 and 2 and 

solving the equation for v, velocity of K’ 

relative to K, we find v= - c/2.



2.5: Time Dilation and Length Contraction

◼ Time Dilation:

Clocks in K’ run slow with respect to 

stationary clocks in K.

◼ Length Contraction:

Lengths in K’ are contracted with respect to 

the same lengths stationary in K.

Consequences of the Lorentz Transformation:



Time Dilation

To understand time dilation the idea of 
proper time must be understood:

◼ The term proper time,T0, is the time 
difference between two events occurring at 
the same position in a system as measured 
by a clock at that position. 

Same location (spark “on” then off”)



Not Proper Time

spark “on” then spark “off”

Beginning and ending of the event occur at 

different positions 

Time Dilation

2x1x



Frank’s clock is at the same position in system K when the sparkler is lit in 
(a) and when it goes out in (b). Mary, in the moving system K’, is beside 
the sparkler at (a). Melinda then moves into the position where and when 
the sparkler extinguishes at (b). Thus, Melinda, at the new position, 
measures the time in system K’ when the sparkler goes out in (b).

Time Dilation with Mary, Frank, and 

Melinda



According to Mary and Melinda…

◼ Mary and Melinda measure the two times for the 

sparkler to be lit and to go out in system K’ as 

times t’1 and t’2 so that by the Lorentz 

transformation:

❑ Note here that Frank records x2– x1 = 0 in K with 

a proper time: T0 = t2 – t1 or

with T ’ = t’2 - t’1



1) T ’ > T0  or the time measured between two 

events in moving system K’ is greater than the 

time between the same events in the system K, 

where they are at rest: time dilation.

2) The events do not occur at the same space and 

time coordinates in the two systems

3) System K requires 1 clock and K’ requires 2 

clocks.

Time Dilation:

Moving Clocks Run Slow



Length Contraction

To understand length contraction the idea of 

proper length must be understood:

◼ Let an observer in each system K and K’
have a meter stick at rest in their own 

system such that each measures the same 

length at rest. 

◼ The length as measured at rest is called the 

proper length.



What Frank and Mary measure in their 

own reference frames

Each observer lays the stick down along his or her 
respective x axis, putting the left end at xℓ (or x’ℓ) 
and the right end at xr (or x’r).

◼ Thus, in system K, Frank measures his stick to be:

L0 = xr   - xℓ

◼ Similarly, in system K’, Mary measures her stick 
at rest to be: 

L’0 = x’r  – x’ℓ =L0



What Frank and Mary measure for a 

moving stick
◼ Frank in his rest frame measures the length of the stick 

for Mary’s frame moving with relative velocity.

◼ Thus, according to the Lorentz transformations :

It is assumed that both ends of the stick are measured 
simultaneously, i.e, tr = tℓ and =>tr - tℓ =0

Here Mary’s proper length is L’0 = x’r – x’ℓ

and Frank’s measured length is L = xr – xℓ



Frank’s measurement

So Frank measures the moving length as L given by 

but since both Mary and Frank in their respective frames 
measure L’0  = L0

i.e. the measured length for the moving stick shrinks

and L0  > L. 



A “Gedanken Experiment” to  Clarify 

Length Contraction
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Problem 100,ch.2



Albert Einstein lecturing on the special theory of 
relativity. Photograph: AP



2.6: Addition of Velocities

Taking differentials of the Lorentz 

transformation, relative velocities may be 

calculated:



So that…

defining velocities as: ux = dx/dt, uy = dy/dt, 

u’x = dx’/dt’, etc. it is easily shown that:

With similar relations for uy and uz:



The Lorentz Velocity Transformations

In addition to the previous relations, the Lorentz 

velocity transformations for u’x, u’y , and u’z can 

be obtained by switching primed and unprimed and 

changing v to –v:



2.7: Experimental Verification
Time Dilation and Muon Decay

Figure 2.18: The number of muons detected with speeds near 0.98c is much 
different (a) on top of a mountain than (b) at sea level, because of the muon’s 
decay. The experimental result agrees with our time dilation equation.





Figure 2.20: Two airplanes took off (at different times) from Washington, D.C., where the U.S. 

Naval Observatory is located. The airplanes traveled east and west around Earth as it rotated. 

Atomic clocks on the airplanes were compared with similar clocks kept at the observatory to 

show that the moving clocks in the airplanes ran differently.

Atomic Clock Measurement



The time is changing in the moving frame, but the calculations must also take 

into account corrections due to general relativity (Einstein). Analysis shows that 

the special theory of relativity is verified within the experimental uncertainties.

Flight time

(41.2 h)

(48.6 h)



Respondus lockdown browser

https://web.respondus.com/he/monitor/resources/

https://www.youtube.com/watch?v=XuX8

WoeAycs&feature=youtu.be

https://web.respondus.com/he/monitor/resources/
https://www.youtube.com/watch?v=XuX8WoeAycs&feature=youtu.be

