## The Foucault pendulum in Aggieland

What does it show?? Seeing is believing
$\mathrm{T}=10 \mathrm{sec}$ how long is it??
https://sibor.physics.tamu.edu/home/courses/physic s-222-modern-physics/

## THE NOBEL PRIZE IN PHYSICS 2020

Roger Penrose showed that black holes are a direct consequence of the general theory of relativity. Reinhard Genzel and Andrea Ghez discovered that an invisible and extremely heavy object governs the stars' orbits at the centre of our galaxy, the Milky Way.

Modern Astrophysics describes the large-scale structure of the universe, and the very nature of space-time at the largest and smallest scales. This modern physics of the $21^{\text {st }}$ century has been driven by the observations of gravitational waves emitted during the collision of black holes


Penrose tiling.

Stephen Hawking at the Schuessler Ranch

Can one find a set of shapes that can cover the plane non-periodically?
$\rightarrow$ Penrose tiling (1974)

- need only 2 tiles (rhombus type) 菱形

- substitution rule


Section 2.1, problem 6
6. In the 1887 experiment by Michelson and Morley, the length of each arm was 11 m . The experimental limit for the fringe shift was 0.005 fringes. If sodium light was used with the interferometer ( $\lambda=589 \mathrm{~nm}$ ), what upper limit did the null experiment place on the speed of the Earth through the expected ether?

The shift for the light in two arms is

$$
\Delta d=c\left(\Delta t-\Delta t^{\prime}\right) \text {. From }(2.5)
$$

$$
\Delta t-\Delta t^{\prime}=\frac{v^{2}\left(l_{1}+l_{2}\right)}{c^{3}}
$$

The number of fringes shifted is

$$
\begin{aligned}
& \text { The number of gringo } \\
& \qquad \begin{array}{l}
n=\frac{\Delta d}{\lambda}=\frac{c\left(\Delta t-\Delta t^{\prime}\right)}{\lambda}=\frac{c v^{2}\left(l_{1}+l_{2}\right)}{\lambda c^{3}}= \\
\\
=\frac{v^{2}\left(l_{1}+l_{2}\right)}{\lambda c^{2}}=0.005 .
\end{array}
\end{aligned}
$$

## Lorentz Transformation Equations

A more symmetric form:

$$
\begin{array}{cl}
\beta=\frac{v}{c} & x^{\prime}=\gamma(x-\beta c t) \\
& y^{\prime}=y \\
\frac{1}{\sqrt{1-v^{2} / c^{2}}} & z^{\prime}=z \\
t^{\prime}=\gamma(t-\beta x / c)
\end{array}
$$

## Derivation of Lorentz Transformations

- Use the fixed system K and the moving system K'
- At $t=0$ the origins and axes of both systems are coincident with system K' moving to the right along the $x$ axis.
- A flashbulb goes off at the origins when $t=0$.
- According to postulate 2 , the speed of light will be $c$ in both systems and the wavefronts observed in both systems must be spherical.



## Derivation (con't)

Spherical wavefronts in K :

$$
x^{2}+y^{2}+z^{2}=c^{2} t^{2}
$$

Spherical wavefronts in $\mathrm{K}^{\prime}$ :

$$
x^{\prime 2}+y^{\prime 2}+z^{\prime 2}=c^{2} t^{\prime 2}
$$

Note: these are not preserved in the classical transformations with

$$
\begin{aligned}
& x^{\prime}=x-v t \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t=t^{\prime}
\end{aligned}
$$

## Derivation (con't)

1) Let $x^{\prime}=\gamma(x-v t)$ so that $x=\gamma^{\prime}\left(x^{\prime}+v t^{\prime}\right)$
2) By Einstein's first postulate: $\gamma=\gamma^{\prime}$
3) The wavefront along the $x, x^{\prime}$ - axis must satisfy:

$$
x=c t \text { and } x^{\prime}=c t^{\prime}
$$

4) Thus $c t^{\prime}=\gamma(c t-v t)$ and $c t=\gamma\left(c t^{\prime}+v t^{\prime}\right)$
5) Solving the first one above for $t^{\prime}$ and substituting into the second...

## Derivation of the Lorentz transformation

The simplest linear transformation

$$
\begin{array}{ll}
x^{\prime}=\gamma(x-v t) & x=c t \\
x=\gamma^{\prime}\left(x^{\prime}+v t^{\prime}\right) & x^{\prime}=c t^{\prime} \\
\gamma^{\prime}=\gamma &
\end{array}
$$

Principle of relativity
Consider expanding light is spherical, then light travels a distance

$$
\begin{aligned}
& c t^{\prime}=\gamma(c t-v t) \quad \begin{array}{c}
\text { Divide each } \quad t^{\prime}=\gamma t\left(1-\frac{v}{c}\right) \\
\text { equation by c }
\end{array} \\
& \left.c t=\gamma\left(c t^{\prime}+v t^{\prime}\right)\right] \text { equation by c } \quad t=\gamma t^{\prime}\left(1+\frac{v}{c}\right) \\
& t^{\prime}=\gamma^{2} t^{\prime}\left(1-\frac{v^{2}}{c^{2}}\right) \quad \text { Solve for } \quad \gamma^{2} \\
& \gamma^{2}=\frac{1}{1-v^{2} / c^{2}} \\
& \text { Substitute } \mathrm{t} \\
& \text { from the } \\
& \text { lower to the } \\
& \text { upper equation }
\end{aligned}
$$

Find transformation for the time $\mathrm{t}^{\prime}$

We $\quad x=\gamma^{\prime}\left(x^{\prime}+v t^{\prime}\right)$
had

$$
\begin{aligned}
& x^{\prime}=\gamma\left(x-v^{\prime} t\right) \\
& \gamma=\gamma^{\prime} \\
& t^{\prime}=\gamma t\left(1-\frac{v}{c}\right) \\
& t=\frac{x}{c}
\end{aligned} \quad \begin{aligned}
t=>x / \mathrm{c} \\
\downarrow
\end{aligned} \quad t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right)=\frac{t-\frac{v x}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c}}}
$$

The complete Lorentz Transformations Including the inverse (i.e v replaced with -v ; and primes interchanged)

$$
\begin{array}{ll}
x^{\prime}=\frac{x-v t}{\sqrt{1-\beta^{2}}} & x=\frac{x^{\prime}+v t^{\prime}}{\sqrt{1-\beta^{2}}} \\
y^{\prime}=y & y=y^{\prime} \\
z^{\prime}=z & z=z^{\prime} \\
t^{\prime}=\frac{t-\left(v x / c^{2}\right)}{\sqrt{1-\beta^{2}}} & t=\frac{t^{\prime}+\frac{v x^{\prime}}{c^{2}}}{\sqrt{1-\beta^{2}}}
\end{array}
$$

2.4. \# 11. Show that both Eqs. (2.17) and (2.18) reduce to the Galilean transformation when $\mathrm{v} \ll \mathrm{c}$.

When $v \ll c$ we find $1-\beta^{2} \rightarrow 1$, so

Eqs. (2.17)

$$
x^{\prime}=\frac{x-\beta c t}{\sqrt{1-\beta^{2}}} \rightarrow x-\beta c t=x-v t
$$

Eqs. (2.18)

$$
\begin{gathered}
t^{\prime}=\frac{t-\beta x / c}{\sqrt{1-\beta^{2}}} \rightarrow t-\beta x / c \approx t \\
x=\frac{x^{\prime}+\beta c t^{\prime}}{\sqrt{1-\beta^{2}}} \rightarrow x^{\prime}+\beta c t^{\prime}=x^{\prime}+v t^{\prime} \\
t=\frac{t^{\prime}+\beta x^{\prime} / c}{\sqrt{1-\beta^{2}}} \rightarrow t^{\prime}+\beta x^{\prime} / c \approx t^{\prime}
\end{gathered}
$$

## Remarks

1) If $v \ll c$, i.e., $\beta \approx 0$ and $\gamma \approx 1$, we see these equations reduce to the familiar Galilean transformation.
2) Space and time are now not separated.
3) For non-imaginary transformations (which is required to have physical sense), the frame velocity cannot exceed $c$.
12.' Determine the ratio $\beta=v / c$ for the following: (a) A car traveling $1.00 \mathrm{~km} / \mathrm{h}$. (b) A commercial jet airliner
(Note: values are somewhat changed compared to \#12) traveling $290 \mathrm{~m} / \mathrm{s}$. (c) A supersonic airplane traveling at Mach 2.3 (Mach number $\left.=v / v_{\text {sound }}\right)$. (d) The space station, traveling $27,000 \mathrm{~km} / \mathrm{h}$. (e) An electron traveling 25 cm in 2 ns . (f) A proton traveling across a nucleus $\left(10^{-14} \mathrm{~m}\right)$ in $0.35 \times 10^{-22} \mathrm{~s}$.
a) Conversion $100 \mathrm{~km} / \mathrm{h}=27.77 \mathrm{~m} / \mathrm{s}$ so

$$
\beta=v / c=(27.77 \mathrm{~m} / \mathrm{s}) /\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=9.3 \times 10^{-8}
$$

b) $\beta=v / c=(290 \mathrm{~m} / \mathrm{s}) /\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=9.7 \times 10^{-7}$
c) $v=2.3 v_{\text {sound }}=(2.3 \cdot 330 \mathrm{~m} / \mathrm{s})$ and

$$
\beta=v / c=(2.3 \cdot 330 \mathrm{~m} / \mathrm{s}) /\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=2.5 \times 10^{-6}
$$

d) Conversion $27,000 \mathrm{~km} / \mathrm{h}=7500 \mathrm{~m} / \mathrm{s}$ so

$$
\beta=v / c=(7500 \mathrm{~m} / \mathrm{s}) /\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=2.5 \times 10^{-5}
$$

e) $(25 \mathrm{~cm}) /(2 \mathrm{~ns})=1.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$ so $\beta=v / c=\left(1.25 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=0.42$
f) $\left(1 \times 10^{-14} \mathrm{~m}\right) /\left(0.35 \times 10^{-22} \mathrm{~s}\right)=2.857 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\beta=v / c=\left(2.857 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=0.95
$$

2.4 Two events occur in an inertial system K as follows:
\#13 Event 1: $x_{1}=a, \quad t_{1}=2 a / c, y_{1}=0, z_{1}=0$
Event 2: $x_{2}=2 a, t_{2}=3 a / 2 c, y_{2}=0, z_{2}=0$
In what frame $\mathrm{K}^{\prime}$ will these events appear to occur at the same time? Describe the motion of system K'.

$$
\begin{gathered}
t_{1}^{\prime}=\frac{t_{1}-\frac{v x_{1}}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c}}} \quad t_{2}^{\prime}=\frac{t_{2}-\frac{v x_{2}}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c}}} \text { We require } t_{1}^{\prime}=t_{2}^{\prime} \\
t_{1}-\frac{v x_{1}}{c^{2}}=t_{2}-\frac{v x_{2}}{c^{2}}
\end{gathered}
$$

Plugging values for Events 1 and 2 and solving the equation for v , velocity of $\mathrm{K}^{\prime}$ relative to K , we find $\mathrm{v}=-\mathrm{c} / 2$.
2.5: Time Dilation and Length Contraction

Consequences of the Lorentz Transformation:

- Time Dilation:

Clocks in K' run slow with respect to stationary clocks in K .

- Length Contraction: Lengths in $K^{\prime}$ are contracted with respect to the same lengths stationary in K.


## Time Dilation

To understand time dilation the idea of proper time must be understood:

- The term proper time,$T_{0}$, is the time difference between two events occurring at the same position in a system as measured by a clock at that position.



## Time Dilation

## Not Proper Time



Beginning and ending of the event occur at different positions

## Time Dilation with Mary, Frank, and Melinda



(a)

Frank's clock is at the same position in system $\stackrel{(\mathrm{b})}{\mathrm{K}}$ when the sparkler is lit in (a) and when it goes out in (b). Mary, in the moving system $\mathrm{K}^{\prime}$, is beside the sparkler at (a). Melinda then moves into the position where and when the sparkler extinguishes at (b); Thus, Melinda, at the new position, measures the time in system $K^{\prime}$ when the sparkler goes out in (b).

## According to Mary and Melinda...

- Mary and Melinda measure the two times for the sparkler to be lit and to go out in system $\mathrm{K}^{\prime}$ as times $t^{\prime}{ }_{1}$ and $t^{\prime}{ }_{2}$ so that by the Lorentz transformation:

$$
t_{2}^{\prime}-t_{1}^{\prime}=\frac{\left(t_{2}-t_{1}\right)-\left(v / c^{2}\right)\left(x_{2}-x_{1}\right)}{\sqrt{1-v^{2} / c^{2}}}
$$

- Note here that Frank records $x_{2}-x_{1}=0$ in K with a proper time: $T_{0}=t_{2}-t_{1}$ or

$$
T^{\prime}=\frac{T_{0}}{\sqrt{1-v^{2} / c^{2}}}=\gamma T_{0} \quad \text { with } T^{\prime}=t_{2}-t_{1}
$$

## Time Dilation:

## Moving Clocks Run Slow

1) $T^{\prime}>T_{0}$ or the time measured between two events in moving system $K^{\prime}$ is greater than the time between the same events in the system K, where they are at rest: time dilation.
2) The events do not occur at the same space and time coordinates in the two systems
3) System K requires 1 clock and $\mathrm{K}^{\prime}$ requires 2 clocks.

## Length Contraction

To understand length contraction the idea of proper length must be understood:

- Let an observer in each system K and K' have a meter stick at rest in their own system such that each measures the same length at rest.
- The length as measured at rest is called the proper length.


## What Frank and Mary measure in their own reference frames

Each observer lays the stick down along his or her respective $x$ axis, putting the left end at $x_{\ell}$ (or $x^{\prime}{ }_{\ell}$ ) and the right end at $x_{r}\left(\right.$ or $\mathrm{x}^{\prime}{ }_{r}$ ).

- Thus, in system K, Frank measures his stick to be:

$$
\mathrm{L}_{0}=x_{r}-\mathrm{x}_{\ell}
$$

- Similarly, in system K', Mary measures her stick at rest to be:

$$
\mathrm{L}^{\prime}{ }_{0}=x^{\prime}{ }_{r}-\mathrm{x}_{\ell}^{\prime}=\mathrm{L}_{0}
$$

## What Frank and Mary measure for a moving stick

- Frank in his rest frame measures the length of the stick for Mary's frame moving with relative velocity.
- Thus, according to the Lorentz transformations :

$$
x_{r}^{\prime}-x_{\ell}^{\prime}=\frac{\left(x_{r}-x_{\ell}\right)-v\left(t_{r}-t_{\ell}\right)}{\sqrt{1-v^{2} / c^{2}}}
$$

It is assumed that both ends of the stick are measured simultaneously, i.e, $t_{r}=t_{\ell}$ and $=>t_{r}-t_{\ell}=0$ Here Mary' s proper length is $L^{\prime}{ }_{0}=x^{\prime}{ }_{r}-x_{\ell}^{\prime}$ and Frank's measured length is $L=x_{r}-x_{l}$

## Frank's measurement

So Frank measures the moving length as $L$ given by

$$
L_{0}^{\prime}=\frac{L}{\sqrt{1-v^{2} / c^{2}}}=\gamma L
$$

but since both Mary and Frank in their respective frames measure $L^{\prime}{ }_{0}=L_{0}$
i.e. the measured length for the moving stick shrinks

$$
L=L_{0} \sqrt{1-v^{2} / c^{2}}=\frac{L_{0}}{\gamma}
$$

## A "Gedanken Experiment" to Clarify Length Contraction


2.5

Show that the experiment depicted in Figure 2.11 and discussed in the text leads directly to the derivation of length contraction.

At the paint of reflection the light. has traveled a distance

$$
\begin{aligned}
& \left.\begin{array}{c}
\text { on-tue ratan if travels } \\
L-v \Delta t_{2}=C \Delta t_{2}
\end{array}\right\} \\
& \begin{array}{ll}
\rightarrow \text { total } & \Delta t
\end{array}=\Delta t,+\Delta-L_{2} . \\
& =\frac{2 L c}{c^{2}-v^{2}}=\frac{2 L / c}{1-v^{2} / c^{2}}
\end{aligned}
$$

bat from time dilation we know (with $\Delta t^{\prime}=$ propartime $=2 L_{0} / C$ ) that

$$
\Delta t=\gamma \Delta t^{\prime}=\frac{2 L_{0} / C^{2}}{\sqrt{1-0^{2} / C_{2}}}
$$

comparing the two results for $\Delta t$ we get

$$
\frac{2 L / C}{1-\frac{v^{2}}{c^{2}}}=\frac{2 L_{0} / C}{\sqrt{1-\frac{v^{2}}{C^{2}}}} \quad \text { which veduces to } \left\lvert\, L=L_{0} \sqrt{1-v^{2} / C^{2}}=\frac{L_{0}}{\gamma^{2}}\right.
$$

## Example

2.5
\#22
The Apollo astronauts returned from the moon under the Earth's gravitational force and reached speeds of almost $25,000 \mathrm{mi} / \mathrm{h}$ with respect to Earth. Assuming (incorrectly) they had this speed for the entire trip from the moon to Earth, what was the time difference for the trip between their clocks and clocks on Earth?
2.5 Converting the speed to $\mathrm{m} / \mathrm{s}$ we find $25,000 \mathrm{mi} / \mathrm{h}=11,176 \mathrm{~m} / \mathrm{s}$ \#22 distance eart-woon $=3.84 \times 10^{8} \mathrm{~m}$

In the earth frame $t=\frac{d}{v}=\frac{3,84 \times 10^{8} \mathrm{~m}}{11,176 \mathrm{~m} / \mathrm{s}}=34,359 \mathrm{~s}$
In the astrondentfame $t^{\prime}=\frac{t}{\gamma^{2}}=t \sqrt{1-\beta^{2}}$
The time difference $\Delta t=t-t^{\prime}=t-t \sqrt{1-\beta^{2}}$

$$
=t\left(1-\sqrt{1-\beta^{2}}\right)
$$

$$
=34,359 \mathrm{~s}\left[1-\sqrt{\left(\frac{(1,1+6 \mathrm{~m} / \mathrm{s}}{3+10^{8} \mathrm{~ms}}\right)^{2}+1}\right]
$$

$$
\Delta t=2.4 \times 10^{-5} \mathrm{~s}
$$



Imagine that in another universe the speed of light is only $100 \mathrm{~m} / \mathrm{s}$. (a) A person traveling along an interstate highway at $120 \mathrm{~km} / \mathrm{h}$ ages at what fraction of the rate of a person at rest? (b) This traveler passes by a meterstick at rest on the highway. How long does the meterstick appear?
(a) Converting $\mathrm{r}=120 \mathrm{~km} / \mathrm{h}=33.3 \mathrm{~m} / \mathrm{s}$. Now with $\mathrm{C}=100 \mathrm{~m} / \mathrm{s}$
we have $\beta=\frac{v}{c}=0.333$

$$
\mu=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-0.333^{2}}}=1.061
$$

we conclude that the moving person ages $6.1 \%$ slower
(b) $L^{\prime}=\frac{L}{x}=\frac{1 \mathrm{~m}}{1.061}=0.942 \mathrm{~m}$

Problem 100,ch. 2
The Lockheed SR-71 Blackbird may be the fastest nonresearch airplane ever built; it traveled at 2200 miles/ hour ( $983 \mathrm{~m} / \mathrm{s}$ ) and was in operation from 1966 to 1990. Its length is 32.74 m . (a) By what percentage would it appear to be length contracted while in flight? (b) How much time difference would occur on an atomic clock in the plane compared to a similar clock on Earth during a flight of the Blackbird over its range of 3200 km ?

$$
B=\frac{v}{c}=\frac{983 \mathrm{~m} / \mathrm{s}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=3.28 \times 10^{-6}
$$

which is very small, so we use the binomial approximation
Length contraction $L=\frac{L_{0}}{\gamma} \quad \gamma^{-1}=\sqrt{1-\beta^{2}} \approx 1-\frac{1}{2} \beta^{2}$
(a) The percentage of length contraction is

$$
\begin{gathered}
\text { note: }(1-x)^{+\frac{1}{2}}=1-\frac{1}{2} x+\ldots \\
(1-x)^{-\frac{1}{2}}=1+\frac{1}{2} x+\ldots \\
\operatorname{tn} x \ll 1
\end{gathered}
$$

$$
\begin{aligned}
\% \text { change } & =\frac{L_{0}-L}{L_{0}} \times 100 \%=\frac{L_{0}-L_{0} \gamma^{-1}}{L_{0}} \times 100 \%=\left[1-\gamma^{-1}\right] \times 100 \% \\
& =\left[1-\left(1-\frac{1}{2} \beta^{2}\right] \times 100 \%=\frac{1}{2} \beta^{2} \times 100 \%=5.37 \times 10^{-10}\right.
\end{aligned}
$$

b) The clucks' rates differ by $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$. The clock on the $S R-71$ measwes
the proper time

Time dilation $T^{\prime}=\gamma T_{0} \Rightarrow \Delta t=T^{\prime}-T_{0}=\gamma T_{0}-T_{0}=T_{0}(\gamma-1)=1+\frac{1}{2} \beta^{2}-1=\frac{1}{2} \beta^{2}$

## Albert Einstein lecturing on the special theory of relativity. Photograph: AP



## 2.6: Addition of Velocities

Taking differentials of the Lorentz transformation, relative velocities may be calculated:

$$
\begin{aligned}
& d x=\gamma\left(d x^{\prime}+v d t^{\prime}\right) \\
& d y=d y^{\prime} \\
& d z=d z^{\prime} \\
& d t=\gamma\left[d t^{\prime}+\left(v / c^{2}\right) d x^{\prime}\right]
\end{aligned}
$$

## So that...

defining velocities as: $u_{x}=d x / d t, u_{y}=d y / d t$, $u^{\prime}{ }_{x}=d x^{\prime} / d t^{\prime}$, etc. it is easily shown that:

$$
u_{x}=\frac{d x}{d t}=\frac{\gamma\left(d x^{\prime}+v d t^{\prime}\right)}{\gamma\left[d t^{\prime}+\left(v / c^{2}\right) d x^{\prime}\right]}=\frac{u_{x}^{\prime}+v}{1+\left(v / c^{2}\right) u_{x}^{\prime}}
$$

With similar relations for $u_{y}$ and $u_{z}$.

$$
u_{y}=\frac{u_{y}^{\prime}}{\gamma\left[1+\left(v / c^{2}\right) u_{x}^{\prime}\right]} \quad u_{z}=\frac{u_{z}^{\prime}}{\gamma\left[1+\left(v / c^{2}\right) u_{x}^{\prime}\right]}
$$

## The Lorentz Velocity Transformations

In addition to the previous relations, the Lorentz velocity transformations for $u^{\prime}{ }_{x}, u^{\prime} y_{y}$, and $u^{\prime}{ }_{z}$ can be obtained by switching primed and unprimed and changing $v$ to $-v$ :

$$
\begin{gathered}
u_{x}^{\prime}=\frac{u_{x}-v}{1-\left(v / c^{2}\right) u_{x}} \\
u_{y}^{\prime}=\frac{u_{y}}{\gamma\left[1-\left(v / c^{2}\right) u_{x}\right]} \\
u_{z}^{\prime}=\frac{u_{z}}{\gamma\left[1-\left(v / c^{2}\right) u_{x}\right]}
\end{gathered}
$$

## 2.7: Experimental Verification Time Dilation and Muon Decay


(a)

(b)

Figure 2.18: The number of muons detected with speeds near $0.98 c$ is much different (a) on top of a mountain than (b) at sea level, because of the muon' s decay. The experimental result agrees with our time dilation equation.

Muon decay (experimental verification of time dilation)
radioactive decay $N=\omega_{0} e^{-\frac{\ln (2) t}{t_{1 / 2}}}=N_{0} e^{\frac{-0.693 t}{t_{1 / 2}}}$ $t_{1 / 2}($ muon $)=1.52 \times 10^{-6} \mathrm{~s}$ experiment with a system that moves dose to $c$, namely $v=0.88 \mathrm{C}$ put a muon detector on top of mount Wilson ( 2000 m ), then bring the detector to sea level $(\mu=0 \mathrm{~m})$. Assume average muon fest is the same

$$
\begin{array}{ll}
N_{O \Lambda}^{(2000)}=1000 & v=0.98 \mathrm{c} \\
N(0)=540
\end{array}
$$

classically: $\quad s=v \cdot t \quad t=\frac{s}{v}=\frac{2000}{0.98} \times \frac{3 \times 10^{8}}{}=6.8 \times 10^{-6} \mathrm{~s}$

$$
N(0)=1000 e^{\frac{-0.693 \times 6.8 \times 10^{-6}}{1.52 \times 10^{-6}}}=45 \text { suvicue but experimen'shows 540! }
$$

relativistically: $T^{\prime}=\gamma T_{0}$

$$
\begin{aligned}
& T^{\prime}=\gamma^{T_{0}} \\
& \gamma=\frac{1}{\sqrt{1-b} / c^{2}}=\frac{1}{\sqrt{1-\frac{0.9 g^{2} c^{2}}{c^{2}}}}=5
\end{aligned}
$$

In the muon restfame the fine period for muons to tavel 2000 m (as seen by a clock fixed to the mountain?

(a)

(b)

$$
\frac{T^{\prime}}{\gamma}=\frac{6.8 \times 10^{-6}}{5}=1.36 \times 10^{-6} \mathrm{~s}
$$

some as experiment

$$
\begin{aligned}
& N(0)=1000 x \\
& e^{-\frac{0.693 \times 1.36 \times 10^{6}}{1.52 \times 10^{-6}}} \\
& =538
\end{aligned}
$$

## Atomic Clock Measurement



Two airplanes took off (at different times) from Washington, D.C., where the U.S. Naval Observatory is located. The airplanes traveled east and west around Earth as it rotated. Atomic clocks on the airplanes were compared with similar clocks kept at the observatory to show that the moving clocks in the airplanes ran differently.

Atomic Clock Measurement
${ }^{133} \mathrm{Cs}$ atom $\left(f \approx 9.2 \cdots \mathrm{GHz} ; 16 \mathrm{~Hz}=10^{5} \mathrm{~Hz}\right) \quad \mathrm{H}$-maser; $\mathrm{Hg}_{\mathrm{g}}{ }^{1}$-storedion standard test time dilation by teging cesium chocks around the world in commercial jet-liners (1571) and comparing them by a "stationary" reference clock at NBS and the Naval observatory in Washington DC.


| Travel | Predicted | Observed |
| :--- | :---: | :---: |
| Eastward | $-40 \pm 23 \mathrm{~ns}$ | $-59 \pm 10 \mathrm{~ns}$ |
| Westward | $275 \pm 21 \mathrm{~ns}$ | $273 \pm 7 \mathrm{~ns}$ |

Flight time

Anegatine time is less then reference clock = ran slower = time dilution Appositive time is more then reference cloak = ran faster!

The time is changing in the moving frame, but the calculations must also take into account corrections due to general relativity (Einstein). Analysis shows that the special theory of relativity is verified within the experimental uncertainties.

# Respondus lockdown browser 

## https://www.youtube.com/watch?v=XuX8 WoeAycs\&feature=youtu.be

https://web.respondus.com/he/monitor/resources,

