1. Moseley
2. It tells you the ratio of the velocity of $n=1$ electron to the speed of light
3. He assumed light was absorbed and emitted in quanta.
4. a decrease in the necessary stopping voltage.
5. Electrons transitioning down from an outer shell replace electrons ejected from an inner shell
6. $P=180 \mathrm{~W}, \mathrm{P}_{\mathrm{V}}=4 \mathrm{MeV}$

$$
\frac{180 \mathrm{~J}}{1 \mathrm{~S}} * \frac{1 \mathrm{MeV}}{1.6 \mathrm{E}-13 \mathrm{~J}} * \frac{1 \text { Photon }}{4 \mathrm{MeV}}=\underline{2.81 \mathrm{E} 14 \text { photon } / \mathrm{s}}
$$

7. From the O -shell to a vacancy in the M -shell.

8. $\mathrm{T}=7562^{\circ} \mathrm{C}=7835 \mathrm{~K}$, const $=2.9 \mathrm{E}-3(\mathrm{~m} * \mathrm{~K})$

$$
\lambda=\frac{\text { const }}{T}=\frac{2.9 \mathrm{E}-3 \mathrm{~m} * \mathrm{~K}}{7835 \mathrm{~K}}=3.7 \mathrm{E}-7 \mathrm{~m}=\underline{370 \mathrm{~nm}}
$$

9. Be+++
10. excitation of a Hg atom to the first excited state.
11. $\mathrm{B}=0.032, \lambda=607 \mathrm{~nm}, \lambda=\frac{c}{f}$ frequency to wavelength.

$$
\lambda^{\prime}=\lambda \sqrt{\frac{1-\beta}{1+\beta}}=607 \sqrt{\frac{1-0.032}{1+0.032}} \approx 588 \mathrm{~nm}
$$

12. $a_{0}=0.5 E-10(m), r_{p}=0.875 E-15(m)$

$$
r_{2}=n^{2} a_{0}=4 * 0.5 E-10(m)=2 E-10(m)
$$

$$
\begin{gathered}
\frac{r_{2}}{r_{p}}=\frac{2 E-10(\mathrm{~m})}{0.875 E-15(\mathrm{~m})}=2.3 E 5 \\
0.01(\mathrm{~m})^{*} 2.3 \mathrm{E} 5=2300(\mathrm{~m})
\end{gathered}
$$

13. All wavelength's scatter the same
14. The nucleus and electron(s) revolve around their mutual center of mass which virtually decreases the apparent mass of the electron.
15. $v_{0}=0.5 \mathrm{c}$

$$
\begin{gathered}
\mathrm{P}_{0}=\mathrm{y}_{0} \mathrm{mv} \mathrm{v}_{0}=\frac{1}{{\sqrt{1-0.5^{2}}}^{*} \mathrm{~m}^{*}(0.5 \mathrm{c})=\mathrm{m} * 0.577 \mathrm{c}} \begin{array}{c}
\mathrm{P}_{1}=1.5^{*} \mathrm{P}_{0}=0.866 \mathrm{c} \\
\mathrm{v}_{1}=\frac{P_{1} * c}{\sqrt{1+P_{1}{ }^{2}}}=\underline{0.655 \mathrm{c}}
\end{array} .
\end{gathered}
$$

16. The emission of a photon from an electron being accelerated by a nucleus.
17. $r_{n}=n^{2} a_{0}, a_{0}=0.5 E-10(m)$

$$
\begin{gathered}
r_{6}=6^{2 *} 0.5 \mathrm{E}-10(\mathrm{~m})=18 \mathrm{E}-10(\mathrm{~m}) \\
\mathrm{D}=2^{*} \mathrm{r}=2^{*} 18 \mathrm{E}-10(\mathrm{~m})=36 \mathrm{E}-10(\mathrm{~m})
\end{gathered}
$$

18. $\mathrm{T}=\frac{\text { const }}{\lambda}$, const $=2.9 \mathrm{E}-3\left(\mathrm{~m}^{*} \mathrm{~K}\right)$

$$
\text { for } \lambda=9348(\mathrm{~nm}), \mathrm{T} \approx 310 \mathrm{~K} \approx 38^{\circ} \mathrm{C}
$$

19. $\mathrm{m}_{\mathrm{p}}=938\left(\mathrm{MeV} / \mathrm{c}^{2}\right), \mathrm{m}_{\mathrm{t}}=1777\left(\mathrm{MeV} / \mathrm{c}^{2}\right), \mathrm{k}=\frac{1}{4 \pi \varepsilon}, \mathrm{k}^{*} \mathrm{e}^{2}=1.44 \mathrm{E}-15\left(\mathrm{MeV}^{*} \mathrm{~m}\right), \hbar \mathrm{c}=197\left(\mathrm{MeV}^{*} \mathrm{fm}\right)$

$$
\begin{aligned}
& \mu=\frac{m_{p} m_{\tau}}{m_{p}+m_{\tau}}=613.9\left(\mathrm{MeV} / \mathrm{c}^{2}\right) \\
& a_{0}=\frac{\hbar^{2}}{k * \mu * e^{2}}=1711.3(\mathrm{fm})
\end{aligned}
$$

20. $\lambda=500(\mathrm{~nm}), R_{\text {earth }}=1400\left(\mathrm{~W} / \mathrm{m}^{2}\right), A=1\left(\mathrm{~m}^{2}\right), \epsilon=20 \%, \Phi_{\mathrm{bc}}=1.49(\mathrm{eV})$

$$
P_{\text {delivered }}=R_{\text {earth }} * A=1400(\mathrm{~W})
$$

$$
P_{\text {electrical }}=\epsilon^{*} \mathrm{P}_{\text {delivered }}=0.2 * 1400(\mathrm{~W})=280(\mathrm{w}) \& \mathrm{P}_{\text {electrical }}=\mathrm{V}^{*} \text { I }
$$

$$
\mathrm{V}=\mathrm{hf}-\Phi_{\mathrm{bc}}=\mathrm{hc} / \lambda-\Phi_{\mathrm{bc}}=\frac{1240(\mathrm{eV} * \mathrm{~nm})}{500(\mathrm{~nm})}-1.49(\mathrm{eV})=\underline{0.99(\mathrm{~V})}
$$

$$
\mathrm{I}=\frac{P_{\text {electrical }}}{V}=\frac{280(W)}{0.99(V)}=\underline{282.8(\mathrm{~A})}
$$

