6.4: Finite Square-Well Potential

. o V, x<0 region |
= The finite square-well potential Is y(x)={ 0 0<x<L regionll

Vo x=L region III

= The Schrddinger equation outside the finite well in regions | and Il is
W 1dy
2my dx*

E-V, regions L III or using g2 = 2m(V, — E)/ k>

2
yields ‘;"2/ = a’w. The solution to this differential has exponentials of
X

the form e and e-**. In the region X > L, we reject the positive
exponential and in the region x < L, we reject the negative

exponential. Then'the other one decays into the classically forbidden
region Yo () =A4e” region I, x <0

X ;
Region I | Region II |Region Il ¥1n (x) = Be region III, x > L

0

0 L

Position



Finite Square-Well Solution

= Inside the square well, where the potential V is zero, the wave equation

2
becomes 4V _ _k2y Where k= \/(2mE)/h2 Larger wavelength
dx” Smaller momentum and
energy

= Instead of a sinusoidal solution we have
wy =Ce™ +De™  regionIl, 0<x <L
= The boundary conditions require that
yi=ypatx=0and yy =y atx=1L
and the wave function must be smooth where the regions meet.

E Wave function
s
= Note that the Ve \‘//\\’ S
wave function is E. Exponential
. 80 : o /\{_
nonzero outside 3 ~ "
of the box ok
. EI lﬂ/]/—-\\
0[0 I x 0 L X

Position Position

We will skip the tedious procedure of fulfilling the above boundary conditions, but discuss the results
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13) Compare the results of the finite and infinite square
well potential?

a) The wavelengths are longer for the finite square well.

b) The wavelengths are shorter for the finite square well.

c) The wavelengths are the same.
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13) Compare the finite and infinite square well potentials
and chose the correct statement.

a) There Is a finite number of bound energy states for the
finite potential.

b) There Is an infinite number of bound energy states for
the finite potential.

c) There are bound states which fulfill the condition E>V,.




6.5: Three-Dimensional Infinite-Potential Well

= The wave function must be a function of all three spatial coordinates.

2
We begin with the conservationofenergy p—x +v =2 v

= Multiply this by the wave function to get 2m

2
Loy vy =Ey
2m
= Now consider momentum as an operator acting on the wave

function. In this case, the operator must act twice on each dimension.
Given:

. L 0 . ., 0 . 0
p°=p.+p,+p,’, and Px'/’:—’ha—f by =-ih"" pZV/:—lha—'f
= The three dimensional Schrodinger wave equation is
2 (A2 2 2 %2
(0 'I/ 0 'I/ o'y 2 +Vy=Ey Or — V’y+Vy=Ey
2m| x> ay i 2m

—V?2 Laplace operator

Time independent Schroedinger equation



Consider a free particle inside a box with lengths I.;, L5, and
I, along the x, y, and z axes, respectively, as shown in Figure
6.6. The particle is constrained to be inside the box. Find
the wave functions and energies. Then find the ground-
state energy and wave function and the energy of the first
excited state for a cube of sides 1.

Strategy We employ some of the same strategies to solve
this problem as we used for the one-dimensional case. First,
because we are considering the walls of the box to be abso-
lutely closed, they are infinite potential barriers, and the
wave function ¢ must be zero at the walls and beyond. We
expect to see standing waves similar to Equation (6.31).
But how should we write the wave function so as to
properly include the x y. and z dependence of the wave
function? In this case the mathematics will follow from the
physics. The particle is free within the box. Therefore, the
x-, ¥-, and z-dependent parts of the wave function must be
independent of each other. Inside the box V = 0, so the
wave equation we must solve is
2
ey — By

6.46
2m ( )

It is therefore reasonable to try a wave function of the form
rix, ¥, =) = A sin(k x)sin(k,y)sin( kyz) (6.47)
where A is a normalization constant. The quantities k; (i =
1, 2, 3) are determined by applying the appropriate bound-

ary conditions. To find the energies, we substitute the wave
function into the Schrodinger equation and solve for £

Solution The condition that ¢ = 0 at x = L, requires that
kL, = mym or ky = nyw/ L. The values for the k; are

T T
k= k; = ky =

T
I

where 1y, iz, and n. are integers. Not surprisingly, we have
found that in three dimensions, it is necessary to use thres
quantum numbers to describe the physical state.

(6.48)

Particle ;nB-D box

1

1

I

I

| -

’I.,.-r_ ________ —

X
N Use 3 fiantum numbers n

Figure 6.6 A three-dimensional box that contains a free parti-
cle. The potential is infinite ouside the box, so the particle is con-
strained vo be inside the bosx.

In order to find the energies using Equation (6.43), we
first need to take the appropriate derivatives of the wave
function. We do this first for the variable x.

% = ;—x[ﬁ sin(kyx)sin(kgy)sin{k4z) |
= kA cos(k x)sin(kyy)sin(k.z)

a8 : _

o ﬂx[hlﬂ cos(kyx)sin(k.y)sin(ksz) |

= —(k; )*A sin(kx)sin(k,y)sin(k5z)
= —ki'dr

The derivatives for y and =z are similar, and Equation (6.43)
becomes

i "
oo (ki + kE + kD)o = Eu
This gives
2

fi . .
E=—(k+ kI+ k2
Em[. = %)

We substitute the values of k; from Equation (6.48) in this
equation to obtain

nﬂﬁ?(n.i ny | ma (6.49)

-+ +
Ly Ly L7




Degeneracy

= Analysis of the Schrdodinger wave equation in three dimensions
Introduces three quantum numbers that quantize the energy.

= A quantum state is degenerate when there is more than one wave
function for a given energy.

= Degeneracy results from particular properties of the potential energy
function that describes the system. A perturbation of the potential
energy can remove the degeneracy (to be shown later).




Problem6.26 For a cubical box L1=L2=L3=L

Find the energies of the second, third, fourth, and fifth
levels for the three dimensional cubical box. Which
energy levels are degenerate?

A given state Is degenerate when there is more
than one wave function for a given energy

242 242

7 h (nf+n+nf)=Ey(nf+n]+ni) where E, =;[—7?_2. Then the second, third, fourth,
m

E—
2mL?

and fifth levels are

ground state wavefunction E1 is not degenerate
1.

E,=(2°+1°+1*)E,=6E,  (degenerate)
E,=(2°+2°+1°)E,=9E,  (degenerate)
E,=(3+1°+1°)E, =11E,  (degenerate)
E,=(2°+2°+2°)E,=12E,  (not degenerate)



6.6: Simple Harmonic Oscillator

= Simple harmonic oscillators describe many physical situations: springs,

diatomic molecules and atomic lattices.
Vi) V()

Simple
harmonic
motion

—F =—r(x —xg)

W~

1
X xg
\ X0
Equilibrium Position
position

(a) (b)
m Consider the Taylor expansion of a potential function:
V(x)=Vy+ Vi (x—x) +5V5(x = %) + ...

Redefining the minimum potential and the zero po'rpm‘lal we have
o Vi(x)= V L (x—x,)° x”
Substituting this into the wave equatlon. 2
d2y1 2m Kx* 2mE  mxx®
= EF——ly=| - +
Let a’= Z—f and g = 2;:2E

Potential energy

Potential energy

Diatomic
molecule




The mechanical energy E is constant.

(a) The potential energy U and total energy E
of an object in SHM as a function of x position

© 2016 Pearson Education, Inc.

> X

A Kol 1

Mechanical energy

(b) The same graph as in (a), showing
kinetic energy K as well



Parabolic Potential Well

V(x)

55 W (x)
L
=
[}
=
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| | | |
| | |
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! | x | | x
=@ a —a a
Position

= If the lowest energy level is zero, this violates the uncertainty principle.

= The wave function solutions are y, = H, (x)e‘””‘zl2 where H, (x) are Hermite
polynomials of order n.

= In contrast to the particle in a box, where the oscillatory wave function is a
sinusoidal curve, in this case the oscillatory behavior is due to the polynomial,
which dominates at small x. The exponential tail is provided by the Gaussian
function, which dominates at large x.




‘ Analysis of the Parabollc Potential Well
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o o Hermite polynomial functions are shown above



A hydrogen molecule can be approximated as a simple harmonic
oscillator with force constant k=1.1x10"3 N/m. Find (a) the energy
levels and (b) the possible wavelengths of photons emitted when the

H2 molecule decays from the second excited state eventually to the
ground state.

39. The classical frequency for a two-particle oscillator is [see Chapter 10, Equation (10.4)]
o=k /1= .\/k(m1 +n, )/ mym, = ~/2k /m since the masses are equal in this case. The
energies of the ground state (E,)and the first three excited states are given by

E = [n+ %jhm so the possible transitions (from E to £, E.to E , etc. are AE = hw,

2hw, and 3fiw. Specifically these calculations give:

2% y 2(1.1x10° N/m) _
heo=h, |-~ = (6.582x107° &V's) ——— =0.755 ¢V with a wavelength, _
m 1.673x107 kg

Ac 1240 eV .nm
E 0.755 eV

A=

=1640 nm .

2(1.1 %107 me)
1.673x10% kg

2heo=2(6.582x107" eV-S)\/ =1.51 eV

Ac 1240 eV .-nm
E 1.51 eV

A= =821 nm




Deuteron in a nucleus

22.

Consider a finite square-well potential well of width
3.00 X 107 m that contains a particle of mass
1.88 GeV/ . How deep does this potential well need
to be to contain three energy levels? (This situation
approximates a deuteron inside a nucleus.)
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11. A wave function has the value A sin x between x = 0
and 7 but zero clsewhere. Normalize the wave
function and find the probability that the particle
is (a) between x =0 and x= m/4 and (b) between

= v F
Hovmalin of ¥ ¢ o = 4 (Siuz()rléét = /425—/- =] AA= /;Z__
g
% -
@ 2 "%
p=jw,<y:—(f L . )/ (T 15 | |
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% 7 2 n\d '?) 4 g O



Rectangular box
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31. A particlc is trapped in a rectangular box having sides

L, 2L, and 4L. Find the energy of the ground state and

first three excited states. Are any of these states

degencratce? . ’

<ill 2
. Ao 8 2 5 W
(v prowlglale n, = Uy =y =1 2 2 ([.,t /):2’ IZ’?
uyl. le/ 32 o7
W?Wb!&fl MO&LW&F M,y: 'Lr,/ !—PC;/IJSIQ‘/ wa ko “5:2_
2,92
= gX
tmi (1157 KT (ol i
stcond exa Lok slak n,=1, n2 1,n;=3 n,=1, n,=2, N3 =1
E;m L% 5 2% 722 { 7
QZ.NL {/"‘ 95% (wo!4( L&) E’::Z u’/i,_

/ wdl’(,[mcl«o; }V(klj,?.]— ASluﬁ‘ 5('(__';” S :’_L'_T‘-{

’ 3

R T T N —



Cheé.

35. A nitrogen atom of mass 2.32 X 107*° kg oscillates in
one dimension at a frequency of 10"” Hz. What are its
effective force constant and quantized energy levels?

We use relation: f = 22 = (L) (5)’21'

T 2/ \m

Force constant:

N
k=mx 2 f)? = 2.32 x 10726 x (2 x 1013)2 = 91.6—

m
Energy in eV:
E—h><2f +1 = 6.626 x 1073% x L
o " (" 2) S 1.602 x 1019

1
= 4136 x 107%eV (n + )



Albert Einstein and Charlie Chaplin

Einstein: What I most admire about your art,
1S your universality. You don’t say a word, yet
the world understands you!

Chaplin: True. But your glory is even greater!
The whole world admires you, even though
they don’t understand a word of what you say.



CHAPTER 7
The Hydrogen Atom

n 7.1 Application of the Schrodinger Equation to the
Hydrogen Atom

s (.2 Solution of the Schrodinger Equation for
Hydrogen
= 7.3 Quantum Numbers

n 7.4 Magnetic Effects on Atomic Spectra — The
Normal Zeeman Effect

This spherical system has very high symmetry causing
very high degeneracy of the wavefunctions



Lecture a

Labelling of corresponding video



Table 6.2 Common Observables and

Associated Operators

Observable Symbol Associated Operator
Position % X
0
Momentum p - =
1 0Xx
Potential energy U U(x)
Kineti K L
netic ener — c
B! 2m  9x
ﬁ? 82
Hamiltonian H - 5 + U(x)
2m  0x
- . a
Total energy E 1h—

8 2005 Brooks/Cole - Thomson



7.1: Application of the Schrodinger
Equation to the Hydrogen Atom

= The approximation of the potential energy of the electron-proton
system is electrostatic:

Vir)=-

82

dreyr
= Rewrite the three-dimensional time-independent Schrodinger
Equation.

1 [Py Sy PvErD | p
2my(x,y,z) Ox Oy 0z
For Hydrogen-like atoms (He* or Li**)
« Replace e? with Ze? (Z is the atomic number)
= Use appropriate reduced mass u

Uranium is a chemical element with the symbol U
and atomic number Z=92



Application of the Schrodinger Equation

= [he potential (central force) V(r) depends on the distance r
between the proton and electron.

S rinoing Transform to spherical polar
Z = rcos "H__HH P .
FTR 1 (4 coordinates because of the
0 = cos™ ! ;i (Polar angle) r a J i T radial Symmetry_
¢ = tan ! = (Azimuthal angle) ! .

’ I Insert the Coulomb potential

A into the transformed

______ N Schrddinger equation.

(x v)
X

1 6 261//) 1 & [ . 61//) 1 &%w 2u
— | F + sin @ + + E-V)y=0
2 [ or ) r*sin@ o0 r’sin0 6¢°  h’ : W




Application of the Schrodinger Equation

= The wave function  is a function of r, 6, @
—> Equation is separable.
— Solution may be a product of three functions.

— p(r.0.0)=R(\[(O)g($)  Eaion7s

= We can separate Equation 7.3 into three separate differential
equations, each depending on one coordinate: r, 6, or ¢

Divide and conquer !!




7.2: Solution of the Schrodinger Equation
for Hydrogen

= Substitute Eq (7.4) into Eq (7.3) and separate the resulting
equation into three equations: R(r), f(68), and g(¢).

Separation of Variables
= The derivatives from Eq (7.4)

o e 0 Co0 64;;52: 6752
= Substitute them into Eq (7.3)
2
fga[rzaR} Rg [s'n 0 ] R O8 2l y)REg =0

r or or) r*sinf o0 80) r*sin“0o¢> h*
= Multiply both sides of Eq (7.6) by r? sin? 6 / Rfg

. D 2
S0 (o) sy 502 (107 17
R o\ or) n 7 00\ 80) gog




Solution of the Schrodinger Equation

= Only rand @ appear on the left side and only ¢ appears on the right
side of Eq (7.7)

= The left side of the equation cannot change as ¢ changes.
= The right side cannot change with either r or 6.

=« Each side needs to be equal to a constant for the equation to be true.
Set the constant -m,? equal to the right side of Eq (7.7)

S, =My g - azimuthal equation  Eq(7.8)
. d¢ | |
= Itis convenient 1o cnoose a solution to be g™



Properties of Valid Wave Functions

Boundary conditions

1) In order to avoid infinite probabilities, the wave function must be finite
everywhere.

2) In order to avoid multiple values of the probability, the wave function must be
single valued.

3) For finite potentials, the wave function and its derivative must be continuous.
This is required because the second-order derivative term in the wave
equation must be single valued. (There are exceptions to this rule when Vis

infinite.)
4) In order to normalize the wave functions, they must approach zero as x
approaches infinity.

Solutions that do not satisfy these properties do not generally correspond to
physically realizable circumstances.

Y(x,1) = Ae" ™ = Alcos(kx — wt) +isin(kx —@f)] Not normalizable



Solution of the Schrodinger Equation

. e™?satisfies Eq (7.8) for any value of m,.

= The solution be single valued in order to have a valid solution for

any @, which is g(9) = g(¢ +27)
g(¢=0)=g(¢ =27) —— g0 — 27

= M, to be zero or an integer (positive or negative) for this to be
true.

« If Eq (7.8) were positive, the solution would not be realized.

= Set the left side of Eq (7.7) equal to -m,? and rearrange it.
2
la[rzaR) 2,ur (E - V)_ 1 ( 6fj
Ror\ or h’ sin” @ f sin@ 60 00

= Everything depends on r on the left side and 6 on the right side of
the equation.




