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CHAPTER 6

Quantum Mechanics II

Heisenberg presented Matrix formulation of QM with the same results



Wave motion



5.2: De Broglie Waves = matter waves

◼ Prince Louis V. de Broglie suggested that mass particles should 
have wave properties similar to electromagnetic radiation.

◼ Thus the wavelength of a matter wave is called the de Broglie 
wavelength:

◼ Since for a photon, E = pc and E = hf, the energy can be written as



The Copenhagen Interpretation

◼ Bohr’s interpretation of the wave function consisted of 3 

principles:

1) The uncertainty principle of Heisenberg

2) The complementarity principle of Bohr

3) The statistical interpretation of Born, based on 

probabilities determined by the wave function

◼ Together these three concepts form a logical interpretation of 

the physical meaning of quantum theory. According to the 

Copenhagen interpretation, physics depends on the outcomes 

of measurement.





Wave particle duality solution

◼ The solution to the wave particle duality of an event is given by the 

following principle.

◼ Bohr’s principle of complementarity: It is not possible to describe 

physical observables simultaneously in terms of both particles and 

waves.

◼ Physical observables are those quantities such as position, velocity, 

momentum, and energy that can be experimentally measured. In any 

given instance we must use either the particle description or the wave 

description.



5.7: Probability, Wave Functions, and the 

Copenhagen Interpretation

◼ The wave function determines the likelihood (or probability) of 

finding a particle at a particular position in space at a given time.

◼ The total probability of finding the electron is 1. Forcing this 

condition on the wave function is called normalization. 



An integer number of half wavelengths must fit into 
the box. At the wall’s the probability must be zero 
which means also the wave function must be zero.

(Infinite Square Well)



6.1: The Schrödinger Wave Equation

◼ The Schrödinger wave equation in its time-dependent form for a 

particle of energy E moving in a potential V in one dimension is

◼ The extension into three dimensions is

where is an imaginary number

Cannot be derived from first principles. Only plausibility arguments will be given.



The wave function is linear

Use equation 6.6 and not 6.1



General Solution of the Schrödinger 

Wave Equation

◼ The general form of the solution of the Schrödinger 

wave equation is given by:

which also describes a wave moving in the x direction. 

In general the amplitude may also be complex. This is 

called the wave function of the particle.

◼ The wave function is also not restricted to being real. 

Notice that the sin term has an imaginary number. Only 

the physically measurable quantities must be real. 

These include the probability, momentum and energy.



Beware: Appears to be an acceptable solution at this point

d/dx​[f(g(x))]=f′(g(x))g′(x)



Use equation 6.6 and not 6.1



Normalization and Probability

◼ The probability P(x) dx of a particle being between x and X + dx

was given in the equation

here       denotes the complex conjugate of      

◼ The probability of the particle being between x1 and x2 is given 

by

◼ The wave function must also be normalized so that the 

probability of the particle being somewhere on the x axis is 1.
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Normalize the wave function below (useful integrals 

are in Appendix 3 A)and at Wolframalpha.com



1. Using the Euler relations between exponential and trig functions, we find
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Problem6.10

(a) The probability of being in the interval [0, / 4] is 
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A wave function  is A(eix + e-ix) in the region -<x<  and zero elsewhere. Normalize the wave 

function and find the probability that the particle is (a) between x=0 and x=/4 and (b) between 

x=0 and x=/8. 



Properties of Valid Wave Functions

Boundary conditions

1) In order to avoid infinite probabilities, the wave function must be finite 

everywhere.

2) In order to avoid multiple values of the probability, the wave function 

must be single valued.

3) For finite potentials, the wave function and its derivative must be 

continuous. This is required because the second-order derivative term 

in the wave equation must be single valued. (There are exceptions to 

this rule when V is infinite.)

4) In order to normalize the wave functions, they must approach zero as x

approaches infinity.

Solutions that do not satisfy these properties do not generally 

correspond to physically realizable circumstances.

Not normalizable



15) Consider to normalize the wave function ei(kx-ωt)? 

a) It can not be normalized

b) It can be normalized

c) It can be normalized by a constant factor 

d) It can not be normalized because it is a complex 

function  

Clicker - Questions



Time-Independent Schrödinger Wave Equation

◼ The potential in many cases will not depend explicitly on time.

◼ The dependence on time and position can then be separated in the 
Schrödinger wave equation. Let ,

which yields:

Now divide by the wave function:

◼ The left side of this last equation depends only on time, and the right 
side depends only on spatial coordinates. Hence each side must be 
equal to a constant. The time dependent side is

See Example 6.5



◼ We integrate both sides and find:

where C is an integration constant that we may choose to be 0. Therefore

This determines f to be                         where

◼ This is known as the time-independent Schrödinger wave equation, and it is a 

fundamental equation in quantum mechanics.

Time-Independent Schrödinger Wave 

Equation (con’t)

here B = E for a free 

particle wave function : 
   

comparison with the free particle wavefunction gives the separation constant E



Stationary State

◼ Recalling the separation of variables: 

and with  f(t) =            the wave function can be written as:

◼ The probability density becomes:

◼ The probability distributions are constant in time. This is a standing 

wave phenomena that is called the stationary state.

   

Y(x,t) =y(x) f (t)

  

e-iwt



Comparison of Classical and Quantum 

Mechanics
◼ Newton’s second law and Schrödinger’s wave equation are 

both differential equations.

◼ Newton’s second law can be derived from the Schrödinger 

wave equation, so the latter is the more fundamental.

◼ Classical mechanics only appears to be more precise because 

it deals with macroscopic phenomena. The underlying 

uncertainties in macroscopic measurements are just too small 

to be significant.

◼ Ray optics is characteristic of particle-like behavior and is a 

good approximation in aclassical description as long as the as 

the wavelength of the radiation is smaller than then the 

obstacles(apertures etc) it passes.

◼ The only correct theory is quantum mechanics.



6.2: Expectation Values

◼ The expectation value is the expected result of the average of 

many measurements of a given quantity. The expectation value 

of x is denoted by <x>

◼ Any measurable quantity for which we can calculate the 

expectation value is called a physical observable. The 

expectation values of physical observables (for example, 

position, linear momentum, angular momentum, and energy) 

must be real, because the experimental results of 

measurements are real.

◼ The average value of x is 



Continuous Expectation Values

◼ We can change from discrete to 

continuous variables by using the 

probability P(x,t) of observing the 

particle at a particular x.

◼ Using the wave function, the 

expectation value is of position:

◼ The expectation value of any 

function g(x) for a normalized wave 

function:



Momentum Operator

◼ To find the expectation value of p, we first need to represent p in terms 

of x and t. Consider the derivative of the wave function of a free particle 

with respect to x:

With k = p / ħ  we have

This yields

◼ This suggests we define the momentum operator as .

◼ The expectation value of the momentum is

An operator transforms one function into another



◼ The position x is its own operator as seen above.

◼ The time derivative of the free-particle wave function is

Substituting ω = E / ħ yields

◼ The energy operator is

◼ The expectation value of the energy is

Position and Energy Operators





6.3: Infinite Square-Well Potential

◼ The simplest such system is that of a particle trapped in a box with 

infinitely hard walls that the particle cannot penetrate. This potential 

is called an infinite square well and is given by

◼ Clearly the wave function must be zero where the potential is 

infinite.

◼ Where the potential is zero inside the box, the Schrödinger wave

equation becomes where .

◼ The general solution is .



=1



An integer number of half wavelengths must fit into 
the box. At the wall’s the probability must be zero 
which means also the wave function must be zero.







(a)  We know the energy values from Equation (6.35). The energy value nE  is proportional to 2n

where n is the quantum number. If the ground state energy is 4.3 eV ,  

1. then the next three levels correspond to: 
14 17.2E =

 
eV for n = 2; 

19 38.7E = eV for n = 

3; and 116 68.8E =
 
eV for n = 4.  

(a) The wave functions and energy levels will be like those shown in Figure 6.3. 

 

Problem6.14

A particle in an infinite square-well potential has ground-state energy 4.3eV. (a) Calculate and sketch 

the energies of the next three levels, and (b) sketch the wave functions on top of the energy levels.



6.4: Finite Square-Well Potential

◼ The finite square-well potential is

◼ The Schrödinger equation outside the finite well in regions I and III is

or using

yields . The solution to this differential has exponentials of 

the form eαx and e-αx.  In the region x > L, we reject the positive 

exponential and in the region x < L, we reject the negative 

exponential.Then the other one decays into the classically forbidden 

region

      



◼ Inside the square well, where the potential V is zero, the wave equation 

becomes where

◼ Instead of a sinusoidal solution we have 

◼ The boundary conditions require that

and the wave function must be smooth where the regions meet.

◼ Note that the 

wave function is 

nonzero outside 

of the box. 

Finite Square-Well Solution

We will skip  the tedious procdure of fulfilling the above boundary conditions, but discuss the results

Larger wavelength

Smaller momentum and 

energy



13) Compare the results of the finite and infinite square 

well potential?

a) The wavelengths are longer for the finite square well.

b) The wavelengths are shorter for the finite square well.

c) The wavelengths are the same.

Clicker - Questions



13) Compare the finite and infinite square well potentials 

and chose the correct statement.

a) There is a finite number of bound energy states for the 

finite potential.

b) There is an infinite number of bound energy states for 

the finite potential.

c) There are bound states which fulfill the condition E>Vo.

Clicker - Questions



◼ The wave function must be a function of all three spatial coordinates. 

We begin with the conservation of energy

◼ Multiply this by the wave function to get

◼ Now consider momentum as an operator acting on the wave 

function. In this case, the operator must act twice on each dimension. 

Given:

◼ The three dimensional Schrödinger wave equation is

6.5: Three-Dimensional Infinite-Potential Well

Laplace operator

Time independent Schroedinger equation



Particle in3-D box

Use 3 quantum numbers n
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Problem6.26

Find the energies of the second, third, fourth, and fifth levels for the three dimensional cubical box. Which 

energy levels are degenerate?

A given  state is degenerate when there is more 

than one wave function for a given energy

For a cubical box  L1=L2=L3=L

ground state wavefunction E1 is not degenerate



Degeneracy

◼ Analysis of the Schrödinger wave equation in three dimensions 

introduces three quantum numbers that quantize the energy. 

◼ A quantum state is degenerate when there is more than one wave 

function for a given energy.

◼ Degeneracy results from particular properties of the potential energy 

function that describes the system. A perturbation of the potential 

energy can remove the degeneracy (to be shown later).



6.6: Simple Harmonic Oscillator
◼ Simple harmonic oscillators describe many physical situations: springs, 

diatomic molecules and atomic lattices.  

◼ Consider the Taylor expansion of a potential function:

Redefining the minimum potential and the zero potential, we have

Substituting this into the wave equation:

Let and which yields .
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Parabolic Potential Well

◼ If the lowest energy level is zero, this violates the uncertainty principle.

◼ The wave function solutions are where Hn(x) are Hermite 

polynomials of order n.

◼ In contrast to the particle in a box, where the oscillatory wave function is a 

sinusoidal curve, in this case the oscillatory behavior is due to the polynomial, 

which dominates at small x. The exponential tail is provided by the Gaussian 

function, which dominates at large x.



Analysis of the Parabolic Potential Well

◼ The energy levels are given by

◼ The zero point energy is called the Heisenberg 

limit:

◼ Classically, the probability of finding the mass is 

greatest at the ends of motion and smallest at the 

center (that is, proportional to the amount of time 

the mass spends at each position).

◼ Contrary to the classical one, the largest probability 

for this lowest energy state is for the particle to be 

at the center.

Hermite polynomial functions are shown above



A hydrogen molecule can be approximated a simple 

harmonic oscillator with force constant k=1.1x10^3 N/m



3A



Deuteron in a nucleus



Rectangular box




