'CHAPTER 6
Quantum Mechanics Il

6.1 The Schrddinger Wave Equation

6.2 Expectation Values

6.3 Infinite Square-Well Potential

6.4 Finite Square-Well Potential

6.5 Three-Dimensional Infinite-Potential Well
6.6 Simple Harmonic Oscillator

Heisenberg presented Matrix formulation of QM with the same results



Wave motion

Quantum mechanics is linearly based on wave motion: wave particle duality.
Towards the wave equation:

Max (particle) velocity

y(x,t) = Asin(wt — kx)  wave function at fixed location ‘x’

_9y _ _
Uy =50 = w A cos(wt — kx)

Max (particle) acceleration

0%y :
ay =5 = —w?Asin(wt — kx) = —w? y(x,t)  SHMa, = —wy

At fixed time t

0%y(xt) _ 1 2%y(xt)

Slope:% = —k A cos(wt — kx)

dx2 2  9t2
623/ 2 . 2
Curvature: —— = —k“ Asin(wt — kx) = —k* y(x,t)
62 62 aZy 2 ( ) 2
. 0%y 10%y 9t2 __ —wey(xt) -—w* 5
Wave equation 9xZ — pZoc2 32_32; = Ty - Y,
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5.2: De Broglie Waves = matter waves

Prince Louis V. de Broglie suggested that mass particles should
have wave properties similar to electromagnetic radiation.

Thus the wavelength of a matter wave is called the de Broglie
wavelength:

A=—
P

= Since for a photon, £ = pc and E = hf, the energy can be written as

hf = pc=pif




The Copenhagen Interpretation

= Bohr’ s interpretation of the wave function consisted of 3
principles:
1)  The uncertainty principle of Heisenberg
2)  The complementarity principle of Bohr

3) The statistical interpretation of Born, based on
probabilities determined by the wave function

s  Together these three concepts form a logical interpretation of
the physical meaning of quantum theory. According to the
Copenhagen interpretation, physics depends on the outcomes
of measurement.




Mw-f‘d—t"h ‘17 Pr'iua’.,oa& -

(Mo, Localizing @ WoK packt v & Swall keglen L Lave

Au-dy =21 > Ak wast be Loge &0 Aace
Ax Sweall (g(acbf Loeg bon.)

T ——

Tiis hebie bouse - Bk Bx =g Foussian wewe pach)
WW}*"""L? f*"m'f-'r@ : IE s imfwssjw fo imocesepe  toille w/

/-leoswlwg amw:‘m'p.#; Hu precise et os e‘f b, atecet

7 E _ B
T oap S PTTX ..
_ﬂ‘%afpfics

Yor
e = 4f o8 Loze olipent

Use GCoussion Wavd porchadt
dkdx = 50 we put il

on
Lﬁlg’z(éa:?}
&




Wave particle duality solution

= The solution to the wave particle duality of an event is given by the
following principle.

s Bohr’s principle of complementarity: It is not possible to describe
physical observables simultaneously in terms of both particles and
waves.

= Physical observables are those quantities such as position, velocity,
momentum, and energy that can be experimentally measured. In any
given instance we must use either the particle description or the wave
description.




5.7: Probability, Wave Functions, and the
Copenhagen Interpretation

= The wave function determines the likelihood (or probability) of
finding a particle at a particular position in space at a given time.

P(y)dy =¥ (y,0)|" dy

= The total probability of finding the electron is 1. Forcing this
condition on the wave function is called normalization.

J:P (y)dy = ji\q‘(y,t)\z dy =1




Particle in a box (infinite Square Well)

Consider a particle trapped in a box to have wave behavior;

P(x) €3] - o
3 /\ / \ [\ J *Enexgy /
An integer number of half wavelengths must fit into Uy v/\ Vs N—
the box. At the wall’s the probability must be zero BE
which means also the wave function must be zero. ol ot — 16E,
9 gEl
/1 'T//I 1‘./11' 4E
n-=1 or A= ( =1,23.... ) E,
2 0 L 0 L ‘
Position
This condition leads to energy quantization only certain energies are possible
Eelmtmur =P andpe=hf S0 E= P = o P
= = ——Mmv- =—qan c = 0; = = =
2 om P 2m  222m  8ml?

Note: Bohr radius a, = 0.53x1071° m and diameter 2a, = 0.1 nm

5.13 Calculate the quantized energy levels of an electron in a one-dimensional H-atom ({=0.1nm)
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6.1: The Schrodinger Wave Equation

s The Schroédinger wave equation in its time-dependent form for a
particle of energy E moving in a potential V in one dimension is

oY (x,1)  h° 8*P(x.1)
ot 2m  ox’

inh +VY¥Y(x,1)

m The extension into three dimensions is
¥ R(*Y oW Y
ih— =— g ——h —
ot 2m\ ox~ oy Oz

] +VY¥(x,y,z,1)

where 7=~/~-1 is an imaginary number

Cannot be derived from first principles. Only plausibility arguments will be given.



The wave function Is linear

u EXAMPLE 6.1

The wave equation must be linear so that we can use the

superposition principle to form wave packets using two or _
more waves. Prove that the wave function in Equation (61) b

is linear by showing that it is satisfied for the wave function
v(xo ‘) — a‘l’;(x, ‘) " b‘yt(xn ‘)

where a and b are constants, and ¥, and ¥, describe two

waves each satisfying Equation (6.1).

Strategy We take the derivatives needed for Equation
(6.1) and insert them in a straightforward manner. If Equa-
ton (6.1) is satisfied, then the wave equation is linear.

Solution We take each of the derivatives needed for Equa-
ton (6.1).

v _ v, v,

a % a at

v v, 0\1’2
= +

dax ” dx b dx

2 a?
o S T

Ax? Ax?

'y,
Ax?

We insert these derivatives into Equation (6.1) to yield

v, a\l’,) f;’( *v, a’\lr,)
3 i WL S T 0" 0 %
"'(“ a % o G
+ Va¥, + b¥,)
Rearrangement of this equation gives
av, A? o'V, )
; + B
“("‘ ot 2m ax’ ;
av, A&V, )
= - ifR—— 4 — ——
% Tmar

Because ¥, and ¥ cach satisfy Equation (6.1), the quanti-
ties in parentheses are identically zero, and therefore ¥ is
also a solution.

Use equation 6.6 and not 6.1



General Solution of the Schrodinger
Wave Equation

= The general form of the solution of the Schrodinger
wave equation is given by:

W (x,t) = A" = Alcos(kx — wt) + i sin(kx — ot)]

which also describes a wave moving in the x direction.
In general the amplitude may also be complex. This is
called the wave function of the particle.

= The wave function is also not restricted to being real.
Notice that the sin term has an imaginary number. Only
the physically measurable quantities must be real.
These include the probability, momentum and energy.




n EXAMPLE 6.2

Show that A¢'™ ) gatisfies the time-dependent Schrodinger
wave equation.

Strategy We take appropriate derivatives needed for
Equation (6.1) and insert them into Equation (6.1) to see
whether it is satisfied.

Solution

aw .

— = —iwAe'" ) = — iV
ol

aw

— = k¥

dx

Y .. -

— =1kV =—-kV¥

ox~

d/dx[f(g(x))]1=f (g(x))g'(x)

We insert these results into Equation (6.1) to yield

b d

ih(—i0W) = —ﬁ—(—kz\l') + V¥

2m

hiK
(ﬁw— - —l-")\l’=0

2m

If we use E = hf = fw and p = hk, we obtain
(r-£-v)v-o
2m

which is zero in our nonrelativistic formulation, because E =
K+ V= p*/2m + V. Thus ¢"* * appears to be an accept-
able solution at this point.

Beware: Appears to be an acceptable solution at this point



n EXAMPLE 6.3

Determine whether Wix, 1) = A sin(kx — @) is an accept-
able solution to the time-dependent Schrodinger wave
equation.

Strategy We again take the derivatives needed for Equa-
tion (6.1) and insert them into the equation to see whether
it is satisfied.

Solution
awv
— = —wA cos{kx — wt)
at
d_—q’ = kA cos(kx — wt)
dx

a'.‘l: = — kA sin(kx — wt) = = 2 4
ax”

After we insert these relations into Equation (6.1), we have

A
—ithw cos(kx — wt) = (W + V)‘l’

hKE ) .
- | —— + V) Asin(kx — wi) (6.5)
2m

(not true)

This equation is generally not satisfied for all x and ¢, and
A sin(kx — ad) is, therefore, not an acceptable wave func-
tion. This function is, however, a solution to the classical
wave equation [Equation (6.3) ].

Use equation 6.6 and not 6.1



Normalization and Probability

= The probability P(x) dx of a particle being between x and X + dx
was given in the equation A

P(x) dx =¥ * (x.1)¥ (x.1) dx

here Y denotes the complex conjugate of Y —2 x > e

zZ=xX+1iy

_y ______ '_

= The probability of the particle heina between x,; and X, is given

by P- szqJ*chbc

= [he wave function must also be normalized so that the
probability of the particle beina somewhere on the x axis is 1.

I_w W * (e )W (x. 1) dx =1




Normalize the wave function below (useful integrals
are in Appendix 3 A)and at Wolframalpha.com

5. YW= 44 ﬁXP(__QFJ . The condition for normalization becomes

&

23
ID lIJ*‘IJdr:Asz r exp[ﬁjdr:A{ : }:A % _1. Therefore

o (2/a) | 4
A= /i3 =2a7".
&




Problem6.10

A wave function ¥ is A(e + e™¥) in the region -n<x< © and zero elsewhere. Normalize the wave
function and find the probability that the particle is (a) between x=0 and x=n/4 and (b) between
x=0 and x=n/8.

1. Using the Euler relations between exponential and trig functions, we find
y = A(e" +e™)=2Acos(x).

. . 2 * V4 1
Normalization: | y wdx=4A*| cos’(x)dx=4A*7r=1. Thus A=——.
j—ﬂ' j—ﬂ ( ) 2&
The probability of being in the interval [0,z /8] is

/8

78 . 1 pns8 1(x 1.
P:IO y/y/dx:—jo cosz(x)dx=—(5+25m(2x)j

T T 0
1 1
=— =0.119.
16+47z\/§
(a)The probability of being in the interval [0,7/4]is
4 1 s 1(x 1 ™
P=["wwdx==[" cos?(x)dx==| = +=sin(2x
oo [ e e [ 0|
:1+i=0.205.
8 4r



Properties of Valid Wave Functions

Boundary conditions

1) In order to avoid infinite probabilities, the wave function must be finite
everywhere.

2) In order to avoid multiple values of the probability, the wave function
must be single valued.

3) For finite potentials, the wave function and its derivative must be
continuous. This is required because the second-order derivative term
In the wave equation must be single valued. (There are exceptions to
this rule when V is infinite.)

4) In order to normalize the wave functions, they must approach zero as X
approaches infinity.

Solutions that do not satisfy these properties do not generally
correspond to physically realizable circumstances.

Y(x,1) = Ae" ™ = Alcos(kx — wt) +isin(kx —@f)] Not normalizable
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15) Consider to normalize the wave function e!kx-«t)?

a) It can not be normalized
b) It can be normalized
c) It can be normalized by a constant factor

d) It can not be normalized because it is a complex
function




Ime-Independent Schrodinger Wave Equation

The potential in many cases will not depend explicitly on time.

The dependence on time and position can then be separated in the
Schrodinger wave equation. Let W(x,#) =w(x) f(¥),

of (1) _ hf(0)0°p(x)

which yields: iz yw(x) Py 5 2
m X

+V (x)w(x) 1 (1)

1 df() 1 dw(x)
1@ dt 2my(x) dx’
The left side of this last equation depends only on time, and the right

side depends only on spatial coordinates. Hence each side must be
equal to a constant. The time dependent side is

il _p
£ dt

Now divide by the wave function: iA +V(x)

See Example 6.5



Time-Independent Schrodinger Wave
Equation (con’ t)
= We integrate both sides and find: i% Ii{z IB dt ihlnf=Bt+C

where C is an integration constant that we may choose to be 0. Therefore
Bt
lnf = .
ih

This determines f to be 7(7) = Bt _ ~iBtlh here B = E for a free

particle wave function : L1 df@)

@) dt

2 2
-+ 4 ;J’ng) SV (x) = Ep(x)

m This is known as the time-independent Schrdédinger wave equation, and it is a
fundamental equation in quantum mechanics.

comparison with the free particle wavefunction gives the separation constant E



Stationary State

Recalling the separation of variables: Y(x,7) =)1(x) f(¢)
and with f(t) = e the wave function can be written as:

Y(x,t) =w(x)e ™
The probability density becomes:
PP =y (x)(e e )
Y = yp(x)

The probability distributions are constant in time. This is a standing
wave phenomena that is called the stationary state.




Comparison of Classical and Quantum
Mechanics

= Newton’ s second law and Schrodinger’ s wave equation are
both differential equations.

= Newton’ s second law can be derived from the Schrédinger
wave equation, so the latter is the more fundamental.

= Classical mechanics only appears to be more precise because
It deals with macroscopic phenomena. The underlying
uncertainties in macroscopic measurements are just too small
to be significant.

= Ray optics is characteristic of particle-like behavior and is a
good approximation in aclassical description as long as the as
the wavelength of the radiation is smaller than then the
obstacles(apertures etc) it passes.

s The only correct theory is quantum mechanics.




6.2: Expectation Values

= The expectation value is the expected result of the average of
many measurements of a given quantity. The expectation value
of X is denoted by <x>

= Any measurable quantity for which we can calculate the
expectation value is called a physical observable. The
expectation values of physical observables (for example,
position, linear momentum, angular momentum, and energy)
must be real, because the experimental results of
measurements are real.

= The average value of x is

ZNixi
Ny + Noxy + Noxty + Noxty +... 5
N +N,+N;+ N, +... ZN,.

!

X =




Continuous Expectation Values

=  We can change from discrete to J'°° xP(x) dx
continuous variables by usingthe = _ J-w
probability P(x,t) of observing the =
particle at a particular x. _wP (x) dx
= Using the wave function, the J'°° X * (x, )P (x.1) dx
expectation value is of position: [x) =92 ’ ’

J'_w W * (x, ) (x.1) dx

= The expectation value of any -
function g(x) for a normalized wave (g(x)) =j W (x,1)g(x)¥(x,1) dx
function: -




Momentum Operator

An operator transforms one function into another
= To find the expectation value of p, we first need to represent p in terms

of x and t. Consider the derivative of the wave function of a free particle
with respect to x:

%LP = 66 [e )] = ke’ = jipp
be X
Withk=p/h we have OF =i P

ox h

oY (x,1)
ox

This yields p[WY(x,1)] = —ih

., ., 0
= This suggests we define the momentum operator as| p = —ih—

e Ox
(AP = [¥ayd

= The expectation (;} _ _ihj‘w P * (x,1) oY (x,1) dx
—00 ’ Ox




Position and Energy Operators

= The position X is its own operator as seen above.
= The time derivative of the free-particle wave function is

oY 0 [ z(kx—a)t):| P ) Rt

of ot
Substituting w = E / h yields E[Y¥(x,1)] = ‘Nl(x )
ot
/
= The energy operator |@
= The expectation value of the energy is
6LP(x t)

—th. Y *(x,1)




u EXAMPLE 6.6

Use the momentum and energy operators with the conser-
vation of energy to produce the Schrodinger wave
equation.

Strategy We first find the energy E as the sum of the ki-
netic and potential energies. Our treatment is entirely non-
relativistic. We want to use the operator functions, so we
write the kinetic energy in terms of momentum.

Solution The energy is

4

E=K+ V=£+V
2m

(6.27)

‘e allow the operators of both sides of this cqualion to act
on the wave function. The left side gives
~ ('l\l'
EV = ifl,—

ol

(6.28)

The application of the operators on the right side of Equa-
tion (6.27) on ¥ gives

[ﬁ(i))2 + v] - QL(—U,"—’)?\V + VY

Notice that the operator (p)? implies two successive applica-
uons of the f) operator, not the algebraic square of one i)
operator. Now we set the previous equation equal to Equa-
tion (6.28) and obtain

i h* o*W

ih— = — + Vv
at 2m x>

(6.29)

which is the time-dependent Schrodinger wave equation,
Equation (6.1). It should be noted that this example is not
a determination of the Schrodinger wave equation, but
rather a verification of the consistency of the definitions.




6.3: Infinite Square-Well Potential

= The simplest such system is that of a particle trapped in a box with
infinitely hard walls that the particle cannot penetrate. This potential
Is called an infinite square well and is given by

<0,x=>L
Vx)={s %7

n  Clearly the wave function must be zero where the potential is
Infinite.

=  Where the potential is zero inside the box, the Schrédinger wave

d’ 2mE —
equation becomes d—gj = £~ ;:12 W= —kzl// where k =v2mE/h*.
| X

= The general solution is w(x) = Asin kx + Bcoskx.




Infinite Square well

Divide the problem into 3 parts: two are outside the well and one is inside the well.

hZ dzlp N le Elp OUTSIDE: x <0 and x>0; yY=0
2m dx? 2 g2y _ N
INSIDE V=0 and — Z_F = El[) with boundary conditiony = 0atx =0, L
V) Y _ 2 k2 =2 = Asinkx + Bcosk
- ‘ 2 Y and == Y = Asinkx + Bcoskx
3
ax = 0; 0 = Asin0 + Bcos0 So; B=0
;- Yomx=1; 0 = AsinkL. (n=1,2,3......)
Position kL =nm (n = 1,2,3 ...... )
So; k= %
" " Y = Asinkx =
r fEnergy . T
Nauva 7 Asin— x
9 E,
4 Z — 16E h%n?m?
| 9511 n — 2:1;2{ Determine the only constant A: fOCAZSinz(%)dx =1
U i 4E,
-
0 L 0 L ‘ L
Position 22 f " (nnx) dx) AZL =y 2 dl 2 (nnx‘
sin® {—— | ax — =1 = |= an = |= SIn{(——
L X 2 L " L L

Quantized Eneorgy




Particle in a box

Consider a particle trapped in a box to have wave behavior;

% E,

16F,
9E,
4F,

P(x) IEI] o
3 /\ / \ [\| | *Energy ;
An integer number of half wavelengths must fit into Uy v/\ Vs N—
the box. At the wall’s the probability must be zero
which means also the wave function must be zero. o 2 —
2 #’/1 hf
n-=1 or A= ( =1,23.... )
2 0 L 0 L
Position
This condition leads to energy quantization only certain energies are possible
E—k—lmvz—ﬁand c = hf So-E—pz— e _ e
ST Ty anepe= * P T om T 222m - 8mi2
hznz h?m?
(n=1,23 ) or E, =n?

Note: Bohr radius a, = 0.53x1071° m and diameter 2a, = 0.1 nm

5.13 Calculate the quantized energy levels of an electron in a one-dimensional H-atom ({=0.1nm)

9
_hZm? , (4x10-16eVs)2(3x108%)2(10 MMy2

lm_~ _ p23gey
2mzzc2 -n 8(0.5x106eV)2(0.1nm)? e




EXAMPLE 6.9

A typical diameter of a nucleus is about 10~ m. Use the
infinite square-well potential to calculate the transition en-
ergy from the first excited state to the ground state for a
proton confined to the nucleus. Of course, this is only a
rough calculation for a proton in a nucleus.

Strategy To find the wransition energy between the

ground and first excited energy states, we use Equation
(6.35) to find E; and E.

Solution The energy of the ground state, from Equation
(6.35), is

1 74(197.3 ¢V-nm)*
2(107° nm)?

929 9

R 5
E, = 272

2mc =L

2
mec-

1 9
5(1.92 X 10 eV?)

me
The mass of the proton is 938.3 MeV/¢?, which gives

1.92 X 10" eV?
038.8 X 10° eV

E, = = 2.0 MeV

The first excited state energy is found [again from Equation
(6.35)] to be E; = 4FE, = 8 MeV, and the transition energy
is AE = E, — E;, = 6 MeV. This is a reasonable value for
protons in the nucleus.
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Problem6.14

A particle in an infinite square-well potential has ground-state energy 4.3eV. (a) Calculate and sketch
the energies of the next three levels, and (b) sketch the wave functions on top of the energy levels.

(a) We know the energy values from Equation (6.35). The energy value E, is proportional to n®
where n is the quantum number. If the ground state energy is 4.3 eV,

1. then the next three levels correspond to: 4E, =17.2 eV forn =2; 9E, =38.7¢eV forn =
3; and 16E, =68.8 eV forn = 4.
(a) The wave functions and energy levels will be like those shown in Figure 6.3.



6.4: Finite Square-Well Potential

. o V, x<0 region |
= The finite square-well potential Is y(x)={ 0 0<x<L regionll

Vo x=L region III

= The Schrddinger equation outside the finite well in regions | and Il is
W 1dy
2my dx*

E-V, regions L III or using g2 = 2m(V, — E)/ k>

2
yields ‘;"2/ = a’w. The solution to this differential has exponentials of
X

the form e and e-**. In the region X > L, we reject the positive
exponential and in the region x < L, we reject the negative

exponential. Then'the other one decays into the classically forbidden
region Yo () =A4e” region I, x <0

X ;
Region I | Region II |Region Il ¥1n (x) = Be region III, x > L

0

0 L

Position



Finite Square-Well Solution

= Inside the square well, where the potential V is zero, the wave equation

2
becomes 4V _ _k2y Where k= \/(2mE)/h2 Larger wavelength
dx” Smaller momentum and
energy

= Instead of a sinusoidal solution we have
wy =Ce™ +De™  regionIl, 0<x <L
= The boundary conditions require that
yi=ypatx=0and yy =y atx=1L
and the wave function must be smooth where the regions meet.

E Wave function
s
= Note that the Ve \‘//\\’ S
wave function is E. Exponential
. 80 : o /\{_
nonzero outside 3 ~ "
of the box ok
. EI lﬂ/]/—-\\
0[0 I x 0 L X

Position Position

We will skip the tedious procdure of fulfilling the above boundary conditions, but discuss the results
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13) Compare the results of the finite and infinite square
well potential?

a) The wavelengths are longer for the finite square well.

b) The wavelengths are shorter for the finite square well.

c) The wavelengths are the same.
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13) Compare the finite and infinite square well potentials
and chose the correct statement.

a) There Is a finite number of bound energy states for the
finite potential.

b) There Is an infinite number of bound energy states for
the finite potential.

c) There are bound states which fulfill the condition E>V,.




6.5: Three-Dimensional Infinite-Potential Well

= The wave function must be a function of all three spatial coordinates.

2
We begin with the conservationofenergy p—x +v =2 v

= Multiply this by the wave function to get 2m

2
Loy vy =Ey
2m
= Now consider momentum as an operator acting on the wave

function. In this case, the operator must act twice on each dimension.
Given:

. L 0 . ., 0 . 0
p°=p.+p,+p,’, and Px'/’:—’ha—f by =-ih"" pZV/:—lha—'f
= The three dimensional Schrodinger wave equation is
2 (A2 2 2 %2
(0 'I/ 0 'I/ o'y 2 +Vy=Ey Or — V’y+Vy=Ey
2m| x> ay i 2m

Laplace operator

Time independent Schroedinger equation



Consider a free particle inside a box with lengths ;. L,, and
Ly along the x, y, and z axes, respectively, as shown in Figure
f.6. The particle is constrained to be inside the box. Find
the wave functions and energies. Then find the ground-
state energy and wave function and the energy of the first
excited state for a cube of sides I

Strategy We employ some of the same strategies to solve
this problem as we used for the one-dimensional case. First,
because we are considering the walls of the box to be abso-
lutely closed, they are infinite potential barriers, and the
wave function ¢ must be zero at the walls and beyond. We
expect to see standing waves similar to Equation (6.31).

But how should we write the wave function so as to
properly include the x, y, and z dependence of the wave
function? In this case the mathematics will follow from the
physics. The particle is free within the box. Therefore, the
x-, y-, and z-dependent parts of the wave function must be
independent of each other. Inside the box V = 0, so the
wave equation we must solve is

_E?‘!iﬁ, — E!P.

6.46
om (6.46)

It is therefore reasonable to try a wave function of the form
W(x, v, z) = Asin(k x)sin(ky)sin(kyz) (6.47)

where A is a normalization constant. The quantities k; (i =
1, 2, 3) are determined by applying the appropriate bound-
ary conditions. To find the energies, we substitute the wave
function into the Schradinger equation and solve for £

Solution The condition that = 0 at x = L, requires that
kL; = nyw or k; = nyar/ L. The values for the k; are

ﬂ-! m g T

r ky = L (6.48)

where n;, n:, and n; are integers. Not surprisingly, we have

mm

1 ¥

i h

found that in three dimensions, it is necessary to use three
quantum numbers to describe the physical state.

X

Figure 6.6 A three-dimensional box that contains a free parti-
cle. The poteniial is infinite outside the box, so the particle is con-
strained o be inside the box.

In order to find the energies using Equation (6.43), we
first need to take the appropriate derivatives of the wave
function. We do this first for the variable x.

% = %[.ﬁl sin(k, x)sin{koy)sin(k4z) |
= kA cos(k x)sin(kyy)sin( ksz)

e 8 : ,
Pl -ﬁ"x[hlA cos(kyx)sin(k,y)sin(ksz) |
= —(k; )*A sin(k;x)sin(kyy)sin(k5z)

= ki

The derivatives for y and z are similar, and Equation (6.43)
becomes

fi? .
oo Ok + K2+ k) = B
This gives

2

At .
E=—(k:+ k:+ k2
Em[. 2 5)

We substitute the values of & from Equation (6.48) in this
equation to obtain

E=L#(H_L+”z+ﬁ)
2m \L} L} L}

(6.49)

_Particle in3-D box

. Use 3 quantum numbers n



Problem6.26 For a cubical box L1=L2=L3=L

Find the energies of the second, third, fourth, and fifth levels for the three dimensional cubical box. Which
energy levels are degenerate?

A given state Is degenerate when there is more
than one wave function for a given energy

°h? ey |
E= omL2 (nf +N; + n§) =E, (nf +n; + n§) where E, = ol Then the second, third, fourth,

and fifth levels are
ground state wavefunction E1 is not degenerate

1. :
E,=(2°+1°+1°)E,=6E,  (degenerate)

E,=(2°+2°+1°)E,=9E,  (degenerate)
E,=(3+1°+1*)E,=11E,  (degenerate)
E,=(2°+2°+2°)E,=12E,  (not degenerate)

5



Degeneracy

= Analysis of the Schrdodinger wave equation in three dimensions
Introduces three quantum numbers that quantize the energy.

= A quantum state is degenerate when there is more than one wave
function for a given energy.

= Degeneracy results from particular properties of the potential energy
function that describes the system. A perturbation of the potential
energy can remove the degeneracy (to be shown later).




6.6: Simple Harmonic Oscillator

= Simple harmonic oscillators describe many physical situations: springs,

diatomic molecules and atomic lattices.
Vi) V()

Simple
harmonic
motion

—> F=—x(x—x)

W~

1
X xg
\ X0
Equilibrium Position
position

Potential energy

Potential energy

Diatomic

(a) (b) molecule

m Consider the Taylor expansion of a potential function:

Vix)=V,+V(x— x0)+ V,(x— xo) +.
Redefining the minimum potentlal and thé zero potentlal we have

V(x)=3Va(x—xp)°
Substituting this into the wave equatlon

dzy/_ 2m E_:c_x2 B _2mE+mlcx2
) N L RO L

. - 2
Letazzz—f andﬁZZ’;TE which yleldscjiT'.;/ (@2 By -




The mechanical energy E is constant.

(a) The potential energy U and total energy E
of an object in SHM as a function of x position

© 2016 Pearson Education, Inc.

> X

A Kol 1

Mechanical energy

(b) The same graph as in (a), showing
kinetic energy K as well



Parabolic Potential Well

V(x)

55 W (x)
L
=
[}
=
o c
o Vs a2
S = —KX fy .
~ . 2 bo Exponential
_____________ Eo [ . | |
| | | |
| | |
| |
| | | |
! | x | | x
=@ a —a a
Position

= If the lowest energy level is zero, this violates the uncertainty principle.

= The wave function solutions are y, = H, (x)e‘””‘zl2 where H, (x) are Hermite
polynomials of order n.

= In contrast to the particle in a box, where the oscillatory wave function is a
sinusoidal curve, in this case the oscillatory behavior is due to the polynomial,
which dominates at small x. The exponential tail is provided by the Gaussian
function, which dominates at large x.




‘ Analysis of the Parabolic Potential Well

V()

h3(x)=
(%)
i (x)=
ho(x)=

S . . 0

Wave functions

1 ‘
M5 (Jax) (2axt ~g) a2
v

1 9
”4,—5 (2ax? —1)¢ax?/2
]

1/4 o 2 /9
/ \"2& xe—ax</2

LA RN > Q. a0 N

AR IR IR IR

1/46_0“2/:_,

o (x)? :

=D

-4 -3 -2 -1 0 1 2 3 4 b

The energy levels are given by

E,=@n+)hNK/m=(n+)ho
The zero point energy is called the Heisenberg
limit: E, - lha)

2

Classically, the probability of finding the mass is
greatest at the ends of motion and smallest at the
center (that is, proportional to the amount of time
the mass spends at each position).

Contrary to the classical one, the largest probability
for this lowest energy state is for the particle to be
at the center.

Hermite polynomial functions are shown above



A hydrogen molecule can be approximated a simple
harmonic oscillator with force constant k=1.1x10"3 N/m

39. The classical frequency for a two-particle oscillator is [see Chapter 10, Equation (10.4)]
o= Jk/ = \/Jll:(m1 +m, )/ mm, =~/2k / m since the masses are equal in this case. The
energies of the ground state (Z,)and the first three excited states are given by
E, = [n+ %]hm so the possible transitions (from E,to E., E to E , etc. are AE =hw,

2hw, and 3ko. Specifically these calculations give:

2k . 2(1.1x10° N/m) _
hoo=h, |~ =(6.582x107 ¢V's) — 0.755 eV with a wavelength,
m

1.673x107% kg
Ac 1240 eV .nm
E  0755¢V

. 2(1.1x10° N/m)
2heo=2(6.582x107° eV s) =
1.673x107 kg

=1640 nm .

=1.51eV

ﬁ_hc _ 1240 eV .nm
E 151eV

=821 nm
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11. A wave function has the value A sin x between x = 0
and m but zecro clsewhere. Normalize the wave
function and find the probability that the particle
is (a) between x =0 and x= m/4 and (b) bctwccn

X = Orand w/2. s (-Lx —_91,2*)/ _ r/ %
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Deuteron Iin a nucleus

22. Consider a finite squarc-well potential well of width
3.00 X 10 ' m that contains a particle of mass
1.88 GeV/ . How deep does this potential well need
to be to contain three cnergy levels? (This situation
approximates a deuteron inside a nucleus.)
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Rectangular box

not 1 gular spyad |
&

&; £, '3
— = E'.T E,(

31. A particle is trapped in a rectangular box having sides
L, 2L, and 4L. Find the energy of the ground state and
first three excited states. Are any of thesc states

degencrate?
il ¥ n,% n2
=, 1l H J
E= Tu [LZ tyz 76§L’>

(o< gtoumelslale 1= y =y =1 Ly 20 g

’*_ ZWL? (H %/ 32 wid
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3 A A2
38. Show that the cncrz;' of a snmplc harmonic oscillator
in the n =1 state is 3fiw/2 by substituting the wave
function ¢, = Axe “*/? directly into the Schrodinger

equation.
2 2
- Ax /2 2. —xX/,
L - Ao — Ao x &

7 —~ —ol = - 1{/
LY _ 3 hux o VT A e = (5 3l

A Xt
L . ZI/VIL:_ b R
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