COLLEGE PHYSICS 201 (sections 31-35)

Instructor:Hans Schuessler

Substituting: Alexandre Kolomenski

https://sibor.physics.tamu.edu/courses/physics-201-college-physics/

Course Description: Fundamentals of classical mechanics, heat and sound.
Prerequisites: High school algebra and trigonometry or the equivalent.
Learning Outcomes: Upon completion of PHYS 201 a student will understand the basic laws and concepts of physics in the following areas and will be able to apply them in problems relating to physical situations: mechanics, mechanical waves, and thermodynamics.
Instructor: Hans Schuessler

> email: h-schuessler@tamu.edu

Office Hours: TBD
Grad. Assistant: Carlos Rodriguez email: carlos.rodriguez@tamu.edu
Text: College Physics $11^{\text {th }}$ ed by Young and Adams with Modified Mastering Physics
The mid-term exams are in person 7:00 to $9: 00 \mathrm{pm}$, on the following Thursdays:
September 14 (Chs 1-5), October 12 (Chs 6-8), November 2 (Chs 9-11), and November 30 (Chs 12-16)

Access Mastering Physics for homework and Webassign for lab

There are prelecture videos and tutorial problems assigned in Mastering Physics (for grade) in addition to the problems from the textbook that are listed on the syllabus.
Grading: 4 exams 60\%; Final (comprehensive) 20\%; Lab 5\%; Recitation 5\%; Homework (Mastering Phys) 5\%; inclass quizzes 5\%.
Scale: 90-100 A, 80-89 B, 60-79 C, 45-59 D, <45 F. Grades may be curved upward. Follow university policy on making up missed work.

You must achieve $\mathbf{7 0 \%}$ or better in the laboratory in order to pass the course.
If your grade on the Final Exam is higher than your lowest grade on one of the four exams during the semester, that lowest grade will be replaced by its average with the Final in computing the course grade. The quiz grade will come from 25 quizzes; if more quizzes than this are given during the semester the lowest grades beyond the best 25 will be dropped.

August 25 is last day for no record drop. Nov. 15 is the last day to Q-drop.
Final Exam is on Tuesday, December 12, 3:30-5:30 pm
https://sibor.physics.tamu.edu/courses/physics-201-college-physics/

What is physics about?

- Science that studies the most general laws of nature.
- Quantifies relations (dependences) between different quantities.
- Needs units to express all these quantities and relations.
- Uses models as approximations for real processes.

Physics is the basis for many engineering disciplines.

What is physics about? (cont.)

- Observations
- Experiments
- Measurements
- Instruments (rulers, clocks, etc.)
- Units
- Language of physics

In this course:

- Kinematics - description of motion
- Dynamics: why objects move
- Conservation laws
- Rotational motion
- Gases and fluids, heat, waves

Giants who created foundations of mechanics:

Galileo Galilei (1564-1642)

Isaac Newton
(1642-1727)

Chapter 0: Mathematics Review

You are encouraged to review this chapter.
All topics are important for this course.
In particular: scientific notation and powers of 10 .

$135,000=1.35 \times 10^{5}$
 $0.000135=1.35 \times 10^{-4}$ \uparrow
 3 significant digits

one digit to the left of the decimal point, multiplied by the appropriate power of 10 .

Rules for significant figures

(1) When numbers are multiplied or divided, the number of significant figures in the final answer equals the smallest number of significant figures in any of the original factors.
(2) When adding/subtracting, the answer should have the same number of decimal places as the limiting term. The limiting term is the number with the least decimal places.

Indication of significant figures (digits) using scientific notation: decimal number with one digit to the left of the decimal point, multiplied by the appropriate power of 10 .

1.5 Precision and Significant Figures

How precise can you measure a physical quantity?
For example, using a meter stick to measure lengths, you may get 0.7880 m or 0.3575 m . These quantities have 4 significant figures.

In the sense of significant figures, $0.788 \mathrm{~m} \neq 0.7880 \mathrm{~m}$.

- Multiplication and Division
$2.4 \times 2.30=5.5(\neq 5.52$ or 5.520$)$
- Addition and Subtraction
$2.4+2.320=4.7(\neq 4.720)$
$1.24 \times 10^{6}+3.23 \times 10^{5}=1.24 \times 10^{6}+0.323 \times 10^{6}=1.56 \times 10^{6}$
$1.24 \times 10^{6}+3.23 \times 10^{4}=1.24 \times 10^{6}+0.0323 \times 10^{6}=1.27 \times 10^{6}$
$1.24 \times 10^{6}+3.23 \times 10^{3}=1.24 \times 10^{6}+0.00323 \times 10^{6}=1.24 \times 10^{6}$

Chapter 1: Models,

Measurement, and Vectors

Note: Explore your textbook!
Unit Conversion Factors (back of the cover),
App. A: The International System of Units
App. B: The Greek Alphabet
App. C: Periodic Table
App. D: Unit Conversion Factors
App. E: Fundamental Physical Constants
Fundamental Physical Constants (end)

Goals for Chapter 1

- To know standards and units and be able to do unit conversions.
- To express measurements and calculated information with the correct number of significant figures.
- To be able to add and subtract vectors both graphically and analytically.
- To be able to break down vectors into x - and y components.

SI Base Quantities and Units

TABLE 1-5
SI Base Quantities and Units
$\left.\begin{array}{|lll|}\hline & \text { Quantity } & \text { Unit }\end{array} \begin{array}{c}\text { Unit } \\ \text { Abbre- } \\ \text { viation }\end{array}\right]$.

Objects of different dimension

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

The Meter - The Original Definition of 1791

The meter was originally defined as
$1 / 10,000,000$ of this distance.

North Pole

Pearson

The Meter - More Recently

- Now tied to Kr discharge and counting a certain number of wavelengths.
- Exceptionally accurate, in fact redefining c, speed of light.
- New definition is the distance that light can travel in a vacuum in 1/299,792,458 s.
- So accurate that it loses only 1 second in 30 million years.

Length

$1 \mathrm{~m} \approx 10^{-7}$ of the distance from the equator to the pole (old definition)
$1 \mathrm{~m}=$ length of the path traveled by light in vacuum during the time interval of $1 / 299,792,458$ of a second

Length (or distance)	Meters (approximate)
Neutron or proton (radius)	$10^{-15} \mathrm{~m}$
Atom	$10^{-10} \mathrm{~m}$
Virus [see Fig. 1-3]	$10^{-7} \mathrm{~m}$
Sheet of paper (thickness)	10^{-4}
m	
Finger width	10^{-2}
m	
Football field length	10^{2}
m	
Mt. Everest height [see Fig. 1-3]	10^{4}
m	
Earth diameter	10^{7}
m	
Earth to Sun	10^{11}
m	
Nearest star, distance	10^{16}
m	
Nearest galaxy	10^{22}
m	
Farthest galaxy visible	$10^{26} \mathrm{~m}$

$1 \mathrm{~kg}=$ mass of the platinum-iridium cylinder in Paris
 $1 \mathrm{u}=1.6605 \times 10^{-27} \mathrm{~kg}$ (unified atomic mass unit)

TABLE 1-3	Some Masses
Object	Kilograms (approx.)
Electron	$10^{-30} \mathrm{~kg}$
Proton, neutron	$10^{-27} \mathrm{~kg}$
DNA molecule	10^{-17}
Bg	
Bacterium	10^{-15}
Mg	
Mosquito	10^{-5}
Plum	10^{-1}
kg	
Person	10^{2}
kg	
Ship	10^{8}
Earth	6×10^{24}
kg	
Sun	2×10^{30}
Gg	
Galaxy	10^{41}

The Reference Kilogram - Figure 1.3

Time

$$
\begin{aligned}
& 1 \mathrm{~s}=1 / 24 * 60 * 60 \text { day }=1 / 86400 \text { day }(\text { def. till } 1967) \\
& 1 \mathrm{~s}=\text { time required for } 9,192,631,720 \text { periods of } \\
& \text { radiation of the Cs-atom }
\end{aligned}
$$

TABLE 1-2 Some typical Time Intervals

Time interval	Seconds (approximate)
Lifetime of very unstable subatomic particle	$10^{-23} \mathrm{~s}$
Lifetime of radioactive elements	10^{-22}
s to $10^{28} \mathrm{~s}$	
Lifetime of muon	10^{-6}
s	
Time between human heartbeats	10^{0}
One day	$\mathrm{s}(=1 \mathrm{~s})$
One year	10^{5}
s	
Human life span	3×10^{7}
s	
Length of recorded history	2×10^{9}
s	
Humans on Earth	10^{11}
s	
Life on Earth	10^{14}
s	
Age of Universe	10^{17}
s	

Metric(SI) Prefixes

TABLE 1-4
Metric (SI) Prefixes

Prefix	Abbreviation	Value
exa	E	10^{18}
peta	P	10^{15}
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deka	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro ${ }^{\dagger}$	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}
${ }^{\dagger} \mu$ is the Greek letter "mu."		

First Stage (operational): Carrier-Envelope Phase Stabilized Few-Cycle FEMTOLASERS System

Parameters
 Pulse width $=6.5 \mathrm{fs}$
 Output power $=4.5 \mathrm{~W}$
 Rep rate $=5 \mathrm{KHz}$
 Energy per pulse $=1 \mathrm{~mJ}$

Autocorrelator traces and spectra: oscillator (a), (b) and amplifier (c),(d)

femto

Fluorescence from stored ions for different degrees of laser cooling

a) Ion cloud condition soon after trapping

b) Cooled ion cloud

d)

Three ion crystal

c) Fear ion erystual

e) Single cooled Ion

Space charge distributions in a linear RF ion trap (storage time -40 sec)

Conversion of units

We would like to find how many meters in 20 miles, how do we do this?
We go to the pages in the end of the textbook, Appendix D "Unit conversion Factors" and use the formula
1 mile=1.609 km
now we know $1 \mathrm{~km}=1000 \mathrm{~m}$ then
$20 \mathrm{mi}=20 \times 1.609 \times 1000 \mathrm{~m}=32180 \mathrm{~m}$

Conversion of units (2 $2^{\text {nd }}$ example)

We would like to know, what will be $18 \mathrm{~km} / \mathrm{h}$ in m / s ?
$18 \mathrm{~km} / \mathrm{h}=18 \times 1000 \mathrm{~m} /(60 \times 60 \mathrm{~s})=5 \mathrm{~m} / \mathrm{s}$

Conversion of units

We would like to find how many meters in 20 miles, how do we do this?
We go to the pages in the end of the textbook, Appendix D "Unit conversion Factors" and use the formula
1 mile=1.609 km
now we know $1 \mathrm{~km}=1000 \mathrm{~m}$ then
$20 \mathrm{mi}=20 \times 1.609 \times 1000 \mathrm{~m}=32180 \mathrm{~m}$

Unit Conversion

Alpha Centauri is the closest "star." It is 4.3 light-years away. How many kilometers away is the star from earth?
Write down: What do you know? What are we trying to get to?
4.3 light-years = time it takes for light to travel distance

Distance $=$ time \times speed Now do it...

What's the speed (rate)?
Speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\text { distance } & =\underbrace{(4.3 \text { ygars })\left(\frac{3.15 \times 10^{7} \delta}{1 \text { yezr }}\right)}_{\text {time }}(\underbrace{\left.\frac{3 \times 10^{8} \text { ゆx }}{\delta}\right)\left(\frac{1 \mathrm{~km}}{1000 \mathrm{xx}}\right)}_{\text {speed }} \\
& =40 \times 10^{12} \mathrm{~km} \text { or } 40 \text { petameters }(\mathrm{Pm})
\end{aligned}
$$

Physical quantities and units

1. All physical quantities always
 have some units!

2. From relationships between these quantities one can derive new units.

Units SI and derivative units

Displacement, distance: 1 meter 1 m
Velocity, speed: 1 meter/second $1 \mathrm{~m} / \mathrm{s}$
Acceleration: 1 meter $/$ second ${ }^{2} \quad 1 \mathrm{~m} / \mathrm{s}^{2}$

Dimensional analysis

You have three equations with distance x, speed V, time t and acceleration a, which of them can be correct?

$$
x=\frac{a t^{2}}{2} \quad x=\frac{V t^{2}}{2} \quad x=\frac{V^{2}}{2 a}
$$

Vectors and vector addition

Vectors: magnitude and direction, can be translated without change of vector value

Vector: magnitude and direction

Vector Addition (1 of 2)

- In the "world of vectors" $1+1$ does not necessarily equals 2.
- Graphically?

Pearson

Vector Addition (2 of 2)

- In the "world of vectors" $1+1$ does not necessarily equal 2.
- Graphically?
we could add $\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$ to get $\overrightarrow{\boldsymbol{D}}$ and then add \vec{C} to \vec{D} to get the final sum (resultant) \vec{R}, \ldots

(b)
or we could add $\overrightarrow{\boldsymbol{B}}$ and $\overrightarrow{\boldsymbol{C}}$ to get \vec{E} and then add
\vec{A} to \vec{E} to get \vec{R}, \ldots

(c)

This vector is
different from $\overrightarrow{\boldsymbol{A}}$;
it points in the
opposite direction.

To find the sum of these three vectors, ...

(a)

(d)
or we could add $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}$, and $\overrightarrow{\boldsymbol{C}}$ in any other order and still get $\overrightarrow{\boldsymbol{R}}$.

(e)

Pearson

Clicker question

Which of the vectors A-E represents the vector sum of vectors 1 and 2 ?
a)

2
b)
c)
d)
e)

Vectors: example of subtraction

$$
\vec{A}-\vec{B}=\vec{A}+(-\vec{B})
$$

Simple Multiplication

- Multiplication of a vector by a scalar
- Let's say Mr.X travelled 1 km east. What if Mr.X had gone 4 times as far in the same direction?
- Just stretch it out: multiply the magnitude and preserve the direction
- Negatives:
- Multiplying by a negative number turns the vector around

Reference frame or system of coordinates

Almost any problem in mechanics starts with selection of the reference system. To determine the location of an object we provide its position in respect to some other object or point that we select as an origin.

Reference frame and unit vectors

Description of position and displacement: vectors

Simplest object: a dot

To locate a dot on a line: number To locate a dot on a plane: 2 numbers, 2D
To locate a dot in space: 3 numbers, 3D
System of coordinates: $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$

Position vector (radius-vector)

The tale of this vector is always in
the origin of the reference frame.
Describes position of a point on a plane
(in 2D, 2 numbers: $\{\mathrm{x}, \mathrm{y}\}$),
or in space (in 3D, 3 numbers, $\{x, y, z\}$).
Displacement- change of the position, this is a vector!

Trigonometry

$$
\begin{gathered}
h_{\mathrm{O}}=\text { length of side } \\
\\
\text { opposite the } \\
\text { angle } \theta
\end{gathered}
$$

$h_{\mathrm{a}}=$ length of side adjacent to the angle θ

Vectors by Components

How do you do it?

- First RESOLVE the vector by its components! Turn one vector into two

$$
\begin{aligned}
& \vec{V}=\vec{V}_{X}+\vec{V}_{Y} \\
& \left|V_{X}\right|=|V| \cos \Theta \\
& \left|V_{Y}\right|=|V| \sin \Theta
\end{aligned}
$$

- Careful when using the sin and cos: don't mix them up!

Or, Decompose the Vectors into Components, Then Solve

(a)

(b)
vector \vec{A} as a sum of component vectors

$$
\vec{A}=\vec{A}_{x}+\vec{A}_{y}
$$

vector component of \vec{A}
$A_{x}=A \cos \theta$
$A_{y}=A \sin \theta$
magnitutde and direction of \vec{A}

$$
\begin{aligned}
& A=\sqrt{A_{x}^{2}+A_{y}^{2}} \\
& \tan \theta=\frac{A_{y}}{A_{x}}
\end{aligned}
$$

Angle is measured counterclockwise!

Vector addition (by components)

Components are projections along the axis

Find
components by trigonometry

Example 1.6 on P. 17-18

How far did Raoul walk?
(a) on the east leg of the trip

$$
\begin{aligned}
A_{\mathrm{x}} & =A \cos \left(35^{\circ}\right)=500 \cos \left(35^{\circ}\right) \\
& =410 \mathrm{~m}
\end{aligned}
$$

(a) on the north leg of the trip

$$
\begin{aligned}
A_{\mathrm{y}} & =A \sin \left(35^{\circ}\right)=500 \sin \left(35^{\circ}\right) \\
& =287 \mathrm{~m}
\end{aligned}
$$

How far did Maria walk?
(c) on the west leg of the trip

$$
B_{\mathrm{x}}=B \cos \left(180^{\circ}+55^{\circ}\right)=700
$$

$$
\cos \left(235^{\circ}\right)
$$

$$
=-402 \mathrm{~m}
$$

$$
\text { Or, } B_{\mathrm{x}}=-B \cos \left(55^{\circ}\right)=-700 \cos \left(55^{\circ}\right)
$$

$$
=-402 \mathrm{~m}
$$

(d) on the south leg of the trip

$$
\begin{aligned}
B_{\mathrm{y}} & =B \sin \left(180^{\circ}+55^{\circ}\right)=700 \sin \left(235^{\circ}\right) \\
& =-573 \mathrm{~m} \\
\text { Or, } B_{\mathrm{y}} & =-B \sin \left(55^{\circ}\right)=-700 \sin \left(55^{\circ}\right) \\
& =-573 \mathrm{~m}
\end{aligned}
$$

Courtesy of Wenhao WU

Using Components to Add Vectors

Example 1.7: Vector \vec{A} has a magnitude of 50 cm and direction of 30°, and vector \vec{B} has a magnitude of 35 cm and direction 110° (both angles measured $c c w$ from $+\hat{\mathrm{x}}$). What is the resultant vector \vec{R} ?

Problem (similar to 1-43)
A plane flies 85 miles at 22° north of east, 1 hen it changes direction to 48° south of east Λ. Then it lands, where is the plane?

plane: $\frac{\text { add }}{}$ the vector components and find

$$
\operatorname{tg} \phi=\frac{R_{y}}{R_{\lambda}}=\frac{-53.7}{155.8} \text { and } \phi=341^{\circ}
$$

or $\phi=19$ deg. south of east

Examples: vector or scalar?

Clicker question

A radio-controlled model car moves 3 m in one direction and then 5 m in another direction. The car's resultant displacement could have a magnitude as small as

- -2 m .
- 0 m .
- 2 m .
- 3 m .
- 8 m.
© 2016 Pearson
Education, Inc.

Summary of simple operations on vectors

1. Sum and subtract

2. Multiply by a number

You can do this by components!
For components it works just as
with numbers, but signs should be taken into account!

However, multiplication of vectors is different!

Vector Multiplication

Scalar (dot) product $\vec{A} \cdot \vec{B}=A B \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
Vector product $\quad|\vec{A} \times \vec{B}|=A B \sin \theta=|\vec{C}|$

Thank you for your attention!

