Chapter 2: Motion along a straight line

Translational Motion and
 Rotational Motion

Today < I

Goals for Chapter 2

- Become comfortable with displacement, velocity, and acceleration in one dimension.
- Explore motions at constant acceleration.
- Be able to graph and interpret graphs as they describe motion.
- Be able to reason proportionally.
- Examine the special case of freely falling bodies.
- Consider relative motion.

Describing Motion ...

Coordinates

\rightarrow Position (displacement)

\rightarrow Velocity
\rightarrow Acceleration
a) Motion with zero acceleration
b) Motion with non-zero acceleration

Kinematics in One Dimension: Displacement

Origin

$$
\Delta x=x-x_{0}
$$

Average velocity

Average velocity = total displacement covered divided by total elapsed time

$\bar{v}=\frac{\Delta x}{\Delta t}$
Unit: m/s meter per second

Graphic representation: average and instantaneous velocities

Average velocity (slope of line $P_{1} P_{2}$)

$$
\bar{v}=\frac{\Delta x}{\Delta t}
$$

$$
v(\text { velocity })=\lim _{\Delta t \rightarrow 0} \frac{\Delta x(\text { displacement })}{\Delta t(\text { time })}=\frac{d x}{d t}
$$

Understanding the direction and the magnitude of the instantaneous velocity graphically

Average speed and velocity

- Average velocity = total displacement covered divided by total elapsed time,

$$
\bar{v}(\text { average_velocity })=\frac{\Delta x(\text { total_displacement })}{\Delta t(\text { total_time })}
$$

\square Speed is just the magnitude of velocity!

- The "how fast" without accounting for the direction.
- Average speed = total distance covered per total elapsed time,
- Instantaneous velocity, velocity at a given instant

$$
v(\text { velocity })=\lim _{\Delta t \rightarrow 0} \frac{\Delta x(\text { displacement })}{\Delta t(\text { time })}=\frac{d x}{d t}
$$

Average Velocity (example)

What is the average velocity over the first 4 seconds?
A) $-2 \mathrm{~m} / \mathrm{s}$
B) $4 \mathrm{~m} / \mathrm{s}$
C) $1 \mathrm{~m} / \mathrm{s}$
D) not enough information to decide.

Instantaneous Velocity

What is the instantaneous velocity at the fourth second?
A) $4 \mathrm{~m} / \mathrm{s}$
B) $0 \mathrm{~m} / \mathrm{s}$
C) $1 \mathrm{~m} / \mathrm{s}$
D) not enough information to decide.

Average Velocity - Figure 2.1

$$
v_{a v, x}=\frac{277 \mathrm{~m}-19 \mathrm{~m}}{4.0 \mathrm{~s}-1.0 \mathrm{~s}}=86 \mathrm{~m} / \mathrm{s}
$$

Displacement and Average Velocity

 and so is the x component of average velocity:

$$
v_{\mathrm{av}, x}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=-26 \mathrm{~m} / \mathrm{s}
$$

Acceleration

- We say that things which have changing velocity are "accelerating"
- Acceleration is the "Rate of change of velocity"
- You hit the accelerator in your car to speed up
- (Ok...It's true you also hit it to stay at constant velocity, but that's because friction is slowing you down...we'll get to that later...)

Average acceleration

Average acceleration = total change of the velocity divided by total elapsed time

$$
\bar{a}=\frac{\Delta v}{\Delta t}
$$

Unit of acceleration:
$(\mathrm{m} / \mathrm{s}) / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2}$
Meters per second squared

Average Velocity

- For constant acceleration

The area under the graph $v(t)$ is the total distance travelled

$$
\Delta x=v_{a v} \Delta t=\Delta t\left(v_{0}+v\right) / 2
$$

Kinematics in one dimension

Motion with constant acceleration.
From the formula for average acceleration

$$
a=\frac{v-v_{0}}{t} \quad \text { We find } \quad v=v_{0}+a t
$$

Average velocity $\bar{v}=\frac{x-x_{0}}{t}$
On the other hand $\quad \bar{v}=\frac{1}{2}\left(v_{0}+v\right)=\frac{1}{2}\left(v_{0}+\left(v_{0}+a t\right)\right)=v_{0}+\frac{1}{2} a t$
Then we

$$
\begin{gathered}
x-x_{0}=\bar{v} t=\left(v_{0}+\frac{1}{2} a t\right) t=v_{0} t+\frac{1}{2} a t^{2} \\
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
\end{gathered}
$$

Recap

- So for constant acceleration we find:

Example of graphic solution: Catching a speeder

(a)
© 2012 Pearson Education, Inc

(b)

$$
\begin{aligned}
& x_{p}=x_{0}+v_{p o} t+\frac{1}{2} a_{p} t^{2}=0+0+\frac{1}{2}(3) t^{2} \\
& x_{c}=x_{0}+v_{o c} t+\frac{1}{2} a_{c} A^{2}=0+(15 \mathrm{~m} / \mathrm{s}) t+0
\end{aligned}
$$

(a) How much time elapses behave the police caters up with the car? $x_{p} f(f)=x_{c}(t)$
(b) What is the officers speed when he catches up? $\quad \frac{1}{2}(3)^{2}=15 \neq 4+=103$

$$
v_{p}=v_{p o}+a_{p} t=0+3 t \quad t=10 \mathrm{~s} \longrightarrow v_{p}=30 \mathrm{~m} / \mathrm{s}
$$

(c) What is the total distance the police has travelled at that time?

$$
\begin{array}{ll}
\text { when } t=10 \mathrm{~s} \text { the cars hus traveled } & x_{c}=15 \frac{\mathrm{~m}}{\mathrm{~s}} 10 \mathrm{~s}=150 \mathrm{~m} \\
\text { and the officer } & x_{p}=\frac{1}{2} 3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}(1 \mathrm{ss})^{2}=150 \mathrm{~m}
\end{array}
$$

Question: How can we predict the position of the particle at any time t ?

- Since the average velocity is defined by $\quad v_{a v, x}=\frac{x(t)-x(0)}{t-0}=\frac{x(t)-x_{0}}{t}$, we have

$$
x(t)=x_{0}+v_{a v, x} t
$$

- But, what is $v_{a v, x}$?

Since $v_{x}(t)$ is linear in time t,

$$
\begin{aligned}
& v_{x}(t)=v_{0 x}+a_{x} t, \\
& v_{a v, x}=\frac{1}{2}\left[v_{x}(t)+v_{0 x}\right] .
\end{aligned}
$$

we have
Therefore,

$$
\begin{align*}
x(t) & =x_{0}+\frac{1}{2}\left[v_{x}(t)+v_{0 x}\right] t \\
& =x_{0}+\frac{1}{2}\left[\left(v_{0 x}+a_{x} t\right)+v_{0 x}\right] t, \\
\text { or, } & x(t)=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2} \ldots . \tag{2.10}
\end{align*}
$$

- This is the second of the three kinematic equations.

Motion with const acceleration (main equations!)

$$
\begin{aligned}
& a=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\frac{v-v_{0}}{t-0} \quad \quad v=v_{0}+a t \\
& t=\frac{v-v}{d} \\
& / v_{a 0}^{v_{0}}=\frac{v_{0}+v}{2}=\frac{v_{0}+v_{0}+a t}{2}=v_{0}+\frac{1}{2} a t \\
& v_{a \nu}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{x-x_{0}}{t-0} \Rightarrow\left|x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}\right| \\
& \left.\left.\begin{array}{l}
x=x_{0}+v_{0}\left(\frac{v-v_{0}}{a}\right)+\frac{1}{2} a\left(\frac{v-v_{0}}{a}\right)^{2} \\
2 a\left(x-x_{0}\right)=2 v_{0}\left(v-v_{0}\right)+\left(v-v_{0}\right)^{2}
\end{array} \right\rvert\, \cdot 2 a \begin{array}{l}
v_{a v}=\frac{v_{0}+v}{2} \\
v_{a v}=\frac{x-x_{0}}{t}
\end{array}\right\} \\
& =2 v_{0}-2 v_{0}^{2}+v^{2}+v_{0}^{2}-3 v v_{0} \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

Kinematics equations for constant acceleration

$$
\begin{aligned}
& v=v_{o}+a t \\
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
& x=x_{0}+\left(\frac{v_{0}+v}{2}\right) t
\end{aligned}
$$

note: the mass m is not in these equations

Particular case of motion with constant acceleration: Falling objects. All objects fall with the same constant acceleration!!

(a)

Evacuated tube
(b)

Kinematics for $\mathbf{a}=9.80 \mathrm{~m} / \mathrm{s}^{2}$ (acceleration of gravity)

Between 1589 and 1592.

Experiments on the motion of objects falling from leaning tower of Pisa under the action of the force of gravity

$$
a_{y}=g=9.8 \mathrm{~m} / \mathrm{s}^{2} \text { if the } y \text {-axis }
$$ points down

$$
\begin{align*}
& v_{y}(t)=v_{0 y}+g t \ldots \ldots \tag{2.6}\\
& y(t)=y_{0}+v_{0 y} t+\frac{1}{2} g t^{2} \\
& v_{y}^{2}=v_{0 y}^{2}+2 g\left(y-y_{0}\right) \tag{2.11}\\
& v_{a v, y}=\frac{1}{2}\left[v_{y}(t)+v_{0 y}\right] \ldots
\end{align*}
$$

Acceleration of gravity on different planets, $a_{\text {Earth }}=9.81 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& a_{\text {sooth }}=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& a_{\text {moon }}=1.67 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& a_{\text {san }}=274 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

A brick is dropped form the roof of a building. The brick strike the ground after 5 s . (sign convention does not matter!)
a. how tell
v. velocity of brick just before it strikes the ground
choose + up:

$$
\begin{aligned}
y=y_{0} & +v_{0} t+\frac{1}{2} a t^{2} \\
y=0 & +0-\frac{1}{2} 9.8 \cdot 5^{2} \neq-122 \mathrm{~m} \\
v & =v_{0}+a t=0-9.8 \cdot 5=-49 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

choose + down:

$$
\begin{aligned}
y-y_{0} & =v_{0} t+\frac{1}{2} a t^{2} \\
& =\frac{1}{2} 9.8 \cdot 5^{2}=122 \mathrm{~m} \\
v & =v_{0}+a t=0+9.8 \cdot 5=4 \frac{5 \mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Important to have the correct interpretation of the results!
The optimal selection of the reference frame helps.

Problem: Vertical motion

Stone is thrown vertically upward

1-D motions in the gravitational field

Ball thrown upward height of the cliff $\mathrm{h}=50 \mathrm{~m}$
$v_{0}=15 \mathrm{mf}$ initial velocity, sign convention upward t
a. low high?
at point A: $t=0$

$$
y_{0}=0
$$

$$
\begin{array}{ll}
t & v^{2}=v_{0}^{2}+2 a\left(y-y_{0}\right) \\
v=0 & y=y_{0} \\
y=? & y=\frac{v^{2}-v_{0}^{2}}{2 a}=\frac{0-15^{2}}{2 \cdot(-9.8)}=(11.5 u)
\end{array}
$$

b. how long in their? (from point A to C)

$$
\begin{aligned}
y & =y_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
0 & =0+15 t-\frac{1}{2} 9.8 t^{2} \\
& =(15-4.9 t) t
\end{aligned}
$$

$$
\begin{aligned}
& y_{0}=0 \\
& y=0
\end{aligned}
$$

$$
t_{1}=0 \quad t_{2}=\frac{15}{4.9}=3.06 \mathrm{~s}
$$

c. how long for leighect point? (tom symmetry $t=\frac{3.06}{2}=1.53$ s) (from point A to B) $v=v_{0}+$ at $v=0$ Lat highest point

$$
t=-\frac{v_{0}}{a}=-\frac{15}{-9.8}=1.53 \mathrm{~s}
$$

d. velocity when bull reaches the thrower's hand (point C)

$$
v=v_{0}+a t=15-5.8 \cdot 3.06=-15.0 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

e. at what time passes the ball a point ${ }_{\mu}^{2 m}$ above the throwers hand

$$
\begin{aligned}
& y=y_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& 8=0+15 . t-\frac{1}{2} 9.8 t^{2} \quad \begin{array}{l}
4.5 t^{2}-15 t+8=0 \\
a t^{2}+6 t+c=0 \quad t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{array} \\
& t=\frac{15 \pm \sqrt{15^{2}-4 \cdot 4.9 .8}}{2 \cdot 4.9}=\left\{\begin{array}{l}
t_{1}=0.69 \mathrm{~s} \text { ball goes up } \\
t_{2}=2.370 \text { ball goes downs }
\end{array}\right.
\end{aligned}
$$

f. How long does it take to reach the base of the cliff and what is the velocity there? $(h=50 \mathrm{~m})$

$$
\begin{aligned}
y & =g_{0}+v_{0} t+\frac{1}{2} a t^{2} \quad t 1=\left(15+(15 \wedge 2+4 * 4.9 * 50)^{\wedge} 0.5\right) /(2 * 4.95)=5.0727=5.07 \mathrm{~s} \\
-50 & =0+15 t-\frac{1}{2} 9.8 t^{2} \quad\left\langle t_{1}=5.07 \mathrm{~s} \quad f_{2}><.15\right. \text { not sensible } \\
v & =v_{0}+a t=15-9.8 \cdot 5.07=-35 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

2.5: Proportional Reasoning

- Thinking about your numbers
- For example: there are linear, quadratic, inverse, inverse-square proportions between two variables x and y.

Clicker problem

When you brake on dry pavement, your maximum acceleration is about three times greater than when you brake on wet pavement. For a given initial speed, how does your stopping distance $x_{\text {dry }}$ on dry pavement compare with your stopping distance $\boldsymbol{x}_{\text {wet }}$ on wet pavement?
a) $\quad x_{\text {dry }}=1 / 3 x_{\text {wet }}$
b) $\quad x_{\text {dry }}=3 x_{\text {wet }}$
c) $\quad x_{\text {dry }}=1 / 9 x_{\text {wet }}$
d) $\quad x_{\text {dry }}=9 x_{\text {wet }}$

