Chapter 3

Motion in a Plane
(Motion in Two-Dimensions)

e calculate position, velocity, and acceleration vectors in 2D
e apply the kinematic equations to understand 2D projectile

motion

e apply the kinematic equations to solve for unknown quantities

for

an object moving with constant acceleration in 2D
e study the relative velocity of an object for observers in different
frames of reference in 2D
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Velocity in a Plane @of2)

* Vectors in terms of Cartesian x- and y- coordinates may
now also be expressed in terms of magnitude and angle.

y
Path of ball in x-y plane
i ///,_>
Wl distance of point P
from the origin is the
Position of ball . -
B - magnitude of vector r
""" Position vector of point P N = ‘F‘ = »\/XZ + y2
X

x and y coordinates of P
(x and y components of 7)

(a)
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Velocity in a Plane @of2)

* From the graphs, we see both average and instantaneous
velocity vectors.

The instantaneous velocity vector U

g is always tangent to the x-y path.
v, and v, are the x
and y components
of U.
—————>
|
|
X
> X
(b) 19)
Average velocity of a Instantaneous velocity of
particle over displacement Ar particle at point r
- Ar - Ar
Vav = — vV =Ilim—
At At—0 At
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The Motion of a Model Car — Example 3.1

« See the worked example on page 67.

U,, points from P, toward P,. It doesn’t matter
how long you make it; its magnitude will be
found mathematically.

y (m)
A
— 60—t

Ay =40m

1] e |
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\elocity in a

Plane
. R Fo—Fy, AT
average velocity Vop = = —
ty—ty At
_ Ax __ Ay
components Vavx = 77 avy = ap
. . == . ?:Z_Fl - A‘F
instantaneous velocity v = lim = lim —
At—0 tz—t;  At—0 At
components v, = lim = v, = lim 2
p X At-0 At Y At—0 At

magnitude  |v| = fvf +v) -~
X

and direction
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Accelerations In a Plane

» Acceleration must now be considered during change In
magnitude AND/OR change in direction.

[25)
’——_>
-

Average acceleration of a

i To find the instantaneous

4 acceleration @ at P, we take the
limit of @, as P, approaches P,

meaning that AU and Ar approach 0.

/

particle over displacement Ar

i . AV
III @ Ao = E
e
/’/ Instantaneous acceleration
of particle at point
- Jim & = i

a must always point toward the
concave side of the curved path.
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3.2 Acceleration in a Plane

average acceleration
a vz v1 _ A_l_j
av = op,—t, At

components

Aavx = At Vavy = At

instantaneous acceleration

— —

2 vl Av
a= lim = lim —
components
Av Av
= lim —= a, = lim =2
x At—0 At Y T At—0 At
magnitude direction

=1 _ 2 2 _ -1 %
la| = /ax+ay 0 = tan o
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The Model Car Revisited — Example 3.2

» See the worked example on page 69.

y (m)
AN A
- t Vo, =3.0mM/s
- t,=25¢ i
— Pzé """""""" >
VZX = 4.0 m/S
i A
- i vy, =3.0m/s
- Pli--:»
t,=20s Vix=10m/s
| I I I I | | | | I > X (m)
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Projectile Motion

- Determined by the Initial velocity, gravity, and air
resistance.

* Footballs, baseballs ... any projectile will follow
this parabolic trajectory in the x-y plane.

* A projectile moves in a vertical plane that
contains the initial velocity vector U,,.
* Its trajectory depends only on U, and

y on the acceleration due to gravity.
N\

™ - ~. Trajectory
i

v e
/ ay g \\

0,
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The Independence of x- and y-Motion —
Figure 3.9

* Notice how the
vertical motion under
free fall spaces out
exactly as the vertical
motion under
projectile motion.

* We can treat the
X- and y- coordinates
separately!
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Where does the apple land?

V()y

-

(a) Wagon reference frame

(b) Ground reference frame



Acceleration

Motion in a Plane (2D) with Constant

A General Rule: Two sets of quantities are treated separately/independently.

All the x-components of the quantities
are related to each other in one set of
kinematic equations:

Ve(t) = vy + ayt oo (2.6)
x(t) = x0+v0xt+%axt2 ......... (2.10)
v = v, +2a,(x —xg) ... ...... (2.11)
Vav,x = %[vx(t) + Vox]. oo (2.7

All the y-components of the quantities
are related to each other in another set
of kinematic equations:

vy(t) = voy + ayt ..................(2.6)
y(t) = yo + voyt + % ayt?....... (2.10)
v =gy, + 2ay(Yy — Y0) o e (2.11)
Vav,y = %[vy(t) + Voy)ooii 2.7)

Important initial steps for solving 2D motion with constant acceleration:

e Set up a convenient x-y coordinate system.

e |dentify the x and y components of initial position, initial velocity, and acceleration.
e Apply the rule set above and NEVER mix x-component and y-component quantities

in the same kinematic equation.
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Projectile Motion: The motion in a

vertical plane of a point particle, given
an initial velocity, under the influence
of a constant gravitation acceleration,

with other factors such as air friction
and wind, etc., all neglected.

3.3  Projectile

Motion

A Summary of the Parameters
(with the given coordinates)

Acceleration:
a, =0

Initial Conditions:
xo=0 Yo~—
Vor = Vo0S(6p) Vo, = vosin(6&y)

v, = 0 at the maximum height

U

- - - 6] //7’, \\\\\
Ul." : \\\ U}_‘.
Ul 1)3). 6-;
\\
constant 4 =78 .
\
ay \\
¥
\
\
> x
constant v, since a, = 0
U0 Ulx U2y U3y
o=~ ————— e === ——— —_———————— e ————— @

Other Examples

e airplane dropping a package

e motorcycle running off a cliff

e rock sliding off the edge of a roof
etc.

X-components
Uy () = vocos(6,)
x(t) = vycos(Gp)t

y-components
v, (1) = vesin(f,) — gt
y(t) = vgsin(G)t —
1 .2
29t
v2= (vsin(6,))? — 29y
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Problem 3.3 12

. I A tennis ball rolls off the edge of a tabletop 0.750 m above the floor and strikes the floor
at a point 1.40 m horizontally from the edge of the table. (a) Find the time of flight of the
ball. (b) Find the magnitude of the initial velocity of the ball. (c) Find the magnitude and

direction of the velocity of the ball just before it strikes the floor.

Take +y downward, so a, =0,a, =+9.80 m/s? and vgy = 0. When the ball reaches the floor, y —y, =0.750 m.

2(y - Yo) _ \/2(0.750 m)
a 9.80 m/s?

1 :
Solve: (a) y—Yp=uvpt + antz gives t = J =0.391s.
y
X=X 140m

t  0391s
() vy =gy =358 M/s. v, = vy, +a,t=(9.80 m/s?) (0.391s) =3.83 m/s. v =1/u§ +v; =5.24 m/s.
_lvl 3.83mis

v, 3.58 m/s

and @ =46.9°. The final velocity of the ball has magnitude 5.24 m/s and is directed at 46.9° below the horizontal.

Reflect: The time for the ball to reach the floor is the same as if it had been dropped from a height of 0.750 m; the
horizontal component of velocity has no effect on the vertical motion.

(b) X=Xy =gyt + %axt2 gives ygy = =3.58 m/s. Since vy, =0, vy =vpy =3.58 M/s.

tan @




3.2 Acceleration in a Plane

average acceleration
a vz v1 _ A_l_j
av = op,—t, At

components

Aavx = At Vavy = At

instantaneous acceleration

2 vl Av
a= lim = lim —
components
Av Av
= lim —= a, = lim =2
x At—0 At Y T At—0 At
magnitude direction

=1 _ 2 2 _ -1 %
la| = /ax+ay 0 = tan o
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Problem 3.2 7

. II A particle starts from rest at the origin with an acceleration vector that has magnitude
4 111_;’52 and direction 30° above the positive T axis. (a) What are the components of its

velocity vector 20 s later? (b) What is the particle’s position at that time?

L=y, +at=at, where we have used the fact that the initial

v=at= (4 m/sz)(ZO s) =80 mis.

. (a) Att=20s, the magnitude of the velocity is

Uy

velocity ~° is zero. Inserting the given time and acceleration gives This

velocity is oriented at 30° above the positive x axis, so its components are
v, = LC0sH = (80 m/s)cos(30°) = 7 x10" m/s
v, = vsin &= (80 m/s)sin(30°) = 4 x10" m/s

: L 1 1 : : : : :
(b) The displacement d of the particle is d = vt + Eat2 = Eatz. Inserting the given acceleration and time gives

d =%at2 :%(4 m/sz)(ZO s)’ =800 m

Again, this displacement is at 30° above the +x axis, so the coordinates of the particle’s position at this point in time
are

d, = d cosd=(800 m)cos(30°) = 7x10* m
d, = dsin#=(800 m)sin(30°) = 4x10° m
Thus, the projectile’s position is (7 x10> m, 4 x10° m).



More Examples in 2D Motion:
Minimum speed required for a stunt performance 4.90 m:

Y _ e — -

A stunt performer on a motorcycle attempts to jump
across a trench as shown in the diagram. What is the
minimum speed that is required to perform this safely?

Consider this:

(a) After the motorcycle leaves the higher platform, it under goes a free fall under the influence of gravity. It
takes a certain amount of time for the motorcycle to fall to the height level of the lower platform. This
time 1s independent of the horizontal velocity. It is given by

4.90 = % gt2, from which this time can be calculated.

(b) To jump across the trench safely, during the above time, the motorcycle needs to cove a horizontal
distance
larger than 20.0m so that it lands safely before it falls below the lower platform. Or, the requirement is
Vot >20.0 m.
Therefore, the minimum horizontal velocity is v, = (20.0 m)/z.
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Determination of Key Iltems

Don't forget: Initial velocity
IS a 2D vector.

Vector.— Vo =Vo +Voy

V,, =V, SING,

Components. —»
vV, =V, COSO,

P 2 2
Initial speed. » v, = \/VOX +Vg, y
Launch angle. - tang, = %
gle. (I Vo, Voy = Vg sinb
,\/}fii 0o
S8 ( ;’k’ a! > X
1 \,/
‘T(M$ Uox = Vg cosb
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A Home-Run Hit — Example 3.4

» See the fully worked example on pages 75-76.

« Detalls examined for the flight of a baseball hit from home
plate toward a fence hundreds of feet away.

y (m) T .
A V., =
\/O=3/7.0m/$ /’,____-QY—_\\\
A A7 h=7?
: e >X (M)
x=R="7
t,=7

2
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Vertical/Horizontal Displacement —
Example 3.6

- After a given horizontal displacement, a projectile will
have a vertical position.

« Sports provide a large number of excellent examples.

 For a field goal, see worked example on page 76.

y
M ="
YT e / .
200m/s  _—-=""" T TT==<__
3.05mp -1 o |
By -
if{%()" ‘
- > X
o J o i

IR :
The quadratic eguation has 2 solutions

The ball will have sufficient height to clear the goalf)ost
at two different values of x. However, only the height at
x = d describes the ball on its way back down.
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Kicked football

W= e
20.0 m/s =Y o ™
3.05 m}|- -

6[) s ™ /,:l

370 i

What is the speed at the highest point |v,|?
What is the max height?

d

Time it takes to reach the ground?

1,
J’:J’o‘l‘vyot—zgf

1 —
O=O+12t—§9.8-t2 t=0
1 2.12
—98t—12=0 _ala
2 t = 98 2.45s

What is the range?

m
| VUxe = VpCOS 37°=20-cos37° = 16?

‘_2: s
L Vyo = Vgsin37° =20 -sin37° = 12?

(%
t=—"=122s
T g
Time to reach highest point

1
Y = Vyo =5 gt*

vy = vyo—gt

1
=12-1.22 - 59.8(1.22)* = 7.35m

3 feet
X =Vyo 't = 16-2.45s = 39.2m - 1— = 120 feet

m



Projectile Motion

° - v_x
| i\ Projectile
motion

® - Vx
Vertical I
fall :
i
b

\<<
<

-

vy =) at this point

2=t
V, =V, C0SH,

X = (v, C0osH,)t
vV, =V,sing, — gt

y = (v, sing,)t —%gt2



Clicker question

You throw a ball horizontally off a roof. Assuming
the ball behaves as an ideal projectile, the time
until it lands is determined only by

a) its initial speed and the horizontal distance to the
point where it lands.

b) the height of the roof and its initial speed.
c) the height of the roof.
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Driving off a cliff

1
Vertical yo =0 y = 9 t?

50m T
y=0 N
/ ~—>X Time for vertical motion
O XO=O le 90m
X = Vyxp-t
X 90

Y ’ ’
/ 0 Vo= ? ( = 3.19s
—g——> .



3.3 Projectile Motion

vy = 0 at the maximum
height

X-components y-components
Vozo)s(é’& Y(£) = vysin(G)t — - gt?
x(t) = 2_ . 2 _
VOCOS(QO)t Uy— (VOSIH( 90)) Zgy

A Vlgg-—
Viy 4
X

constant a,

Examples 3.4&3.5: A home run hit

Given: Vo and 6,
Find: (a) xandy,and,vand g, att=
2.00s

(b) tmax and hmax

(c) Horizontal range R
Solutions:
(@) x(t) = vycos(G,)t

Y(£) = vysin(G)t — > gt?
v, (£) = vyc0s(6))
vy, (t) = vysin(6) — gt

(b) Set v, (£) = vysin(gy) — gt =0
to get toax = Vosin(6y)/g.
Then, set vy = (vosin(§))* — 2gy =0
to get Ny = (Vpsin(6))?%/2g.
(c) Set Y(£) = vysin(B)t — > gt? = t(vsin(6) —5 gt)=0

to get the time of flight t; = 2vysin(6,)/g = 2t oy
x(t) = vycos(G,)t

R = 2vjsin(G))cos(8y)/g = visin(26,)/g

Then, using

to get the range

1
v=(vi+v))2

6 = tan"'(v/v,)
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Grasshopper problem

What is the initial speed?? s ¥
What is the height of the cliff??

Note: a, =0,a,=-9.8m/s v, = 0 when y —y, = 0.0674 m

a) v‘}% = ’i'.?gy + zay (y _ yo) ELU(‘H\H:
m c m y-f:(_)mponent of
Voy = J—Zay(y— Yo) = J—Z(—9.88—2)(0.0674 m)= | LIo7 | i speedof
_ , voy _ 115m/s _ m|.
Yoy = Vo sinbo = vo- sinf,  sin50° . 5? ;r;ue:jj
b) Use horizontal motion to find the time in air. The grasshopper travels in
constant motlon honzgratgl ly
X~ %o X~ %o Time
t = = = L
X —Xo = VOxf+§axf2 Vox Vg c0s50° 110S | inair
Find the vertical displacement at t=1.1s.This is now accelerated motion
1 m 1 m m\2 .
Y —Yo = Voyt + antz = 1.15? x11s+ E(—9.8 S_Z) X (1.15?) = | —4.66m Oer'ght

cliff



Clicker question

You and a friend throw two rocks off a bridge.
Your friend throws hers with an initial direction 30°
below the horizontal. You throw yours with the
same Initial speed but in a direction 30° above the
horizontal. When the two rocks hit the water

a) your friend's iIs moving faster.
b) yours is moving faster.
c) they are moving at the same speed.
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Projectile launched from a cliff




Workout problem:

S
—~
™~

Projectile vy = 65— ,a = 37°
W2 et s
R Vertical motion

| 1

| _ T 42

Y =Yo t Vpyt + 5 Ayt

1
0 =125+ 65(sin37)t + E(_9'8)t2

Solve quadratic equation:

| Y4
) 1374
£ e \ V. t]>&s Not a sensible root
g=1 | U, ,

A
M

t, =10.4s
What is |velocity| at the bottom of the cliff? Horizontal motion
m X = Vg, 't =65c0s37-10.4
v =\/v§+v§ =81.5? — 540 m

m
Ux —_ vxo —_ 65 COS 37 —_ 51.9? (does not change)

m
vy, = 65sin37 —9.8-10* = —62.8—

0 = 50.4° 2 S
g -t

Vy
tanf = — = 1.21
vx




Example 3.7 (and demo) Shooting a falling pear, on page 77

Y
-
-
-
= :
. —— - | i
Line of sight to pear - ([ ArF
- =
-
- | |
g Path of pear— |[/2 [
- i
-
‘-/’ |
’/’ | h
- S
’,/ (? 19l BIBL
Notice that tanf, = -~ i | L[
. Does the arrow | [+
| I \
hit the pear? R
Trajectory of arrow . | L
‘ !
Y | >
| ‘ |
= ! A o
| \
| [ +—
M | o
_,7‘- T )1 X
I § ! —)
A | >
H ! N b
hi | SRRV T P Y VAU W OO SN PR Nty O Sy U GO ot W, SO SO, WO (SRR V" 'V W1 NN, Y9 o o | ‘FMIV‘\‘J___“,J\ m\\w

Note: Without the pull of gravity, the pear would not fall and the arrow would hit the
pear along the dashed straight line.

With the pull of gravity, both the y-positions of the pear and the arrow as a function of
time are lowered by an equal amount — % gt2.

Conclusion: The arrow will hit the pear.




The monkey jumps from the tree at the
moment when the tranquilizer arrow leaves
the barrel:

Is there a hit?

Condition:
For a hit, the x and y

X,y motions are independent

Xm = d
xg = (vgcosa)t
d =vgcosa

d
t =
Vo COS &
1
Vi = dtana:—zgt2
1
yg = t(vysina) — Egtz

tvgsina = dtana

?
: " PgSin a =/tan a
coordinates must be the same }/0 CoS a %

for a particular time

Yes it 1s equal
“ There is a hit



Where is the
monkey??



Helicopter drops parcel




Parcel delivered by helicopter

Vieiir Vear 90 1IN the same direction: difference

km m
Vox = Ve — Vag = 200 — 150 = 507 = 13.9;
ground 1 )
Vertical y=y;+ Voyt + ant Time to hit the ground
motion:

1
— 2

Horizontal vy, -t =x = 13.9 X 3.99s
motion:

/ Release distance is 55.4m behind the car
~Y e X:M&E‘*"‘.&L ~37 X:55.4m

78
tant ===z |9 =54.6°

xR I<

The parcel is always below the
Reference from: helicopter helicopter

Positive is down



You throw a ball horizontally off a roof. Assuming
the ball behaves as an ideal projectile, the time
until it lands is determined only by

a. its initial speed and the horizontal distance to the point
where it lands.

b. the height of the roof and its initial speed.
c. the height of the roof.
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You and a friend throw two rocks off a bridge. Your
friend throws hers with an initial direction 30°
below the horizontal. You throw yours with the
same initial speed but in a direction 30° above the
horizontal. When the two rocks hit the water

a. your friend's iIs moving faster.
b. yours is moving faster.

c. they are moving at the same speed.
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Center-seeking Acceleration




3.4

Uniform Circular Motion

An object moving along a circular path with a constant speed v (magnitude of

velocity)
Velocity and Acceleration Vectors in Uniform Circular Motion O —
constant speed along a circular path.
Velocity: tangent to the circle with constant magnitude v = v, = v
2
Accelerarion: rag = always pointing toward the center of the circle.
Av  As N -
7 = E Av = EAS
-~ _ Av_ vAs
Qav = 7t T Rat
5 — i Av v, As v -
= NS0 ac T RatS0At RV
=V~ V2
o = lal =51V =% it
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Example
Answer the following questions using the given coordinate system.

Part (1): A circular track is 50.0 m in diameter. A runner completes a full lap
on the track in ¢, = 32.0 s in a ccw rotation.

(a) Her average speed for the full lap?
Let R=50.0/2=25.0m
average speed: s; = 27R/t;

(b) Her average velocity for the full lap?
average velocity: v,, =0

Part (b): If she runs the first half of the lap from A through B to C in ¢, = 14.0 s at a constant speed.

(c) Her average speed for this half lap? average speed: s, = 7R/t,

(d) Her average velocity for this half lap? average: Vg, = [(— R) — (R)]/t, = — 2R/t (pointing in — x)

(e) The magnitude of her acceleration? magnitude of the acceleration: a 4= s3/R

(f) The direction of acceleration at point B? pointing downward toward the center of the circle

(e) Her average acceleration? average: dg,, = [(— s2) — (52))/t; = — 2s,/t, pointing in — y axis
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Circular Motion as a Special
Application — Figure 3.20

« Two dimensional motion in a plane takes on unique features
when it is confined to a circle.

* The acceleration is centripetal ("center seeking").

* The velocity vector retains the same magnitude, it changes
direction.

Component of acceleration parallel to velocity:
Changes car’s speed

3 7~ - .
5 N Component of acceleration
/ M $Y o~ perpendicular to velocity: . Acceleration is exactly
/// N /,‘y Changes car’s direction /// =" perpendicular to velocity:;
7 C % e 7 i
/ / g e / no parallel component
£ d v N \@ > /
S : - - ; / : ~8 ’ /
I’ Component of acceleration perpendicular to ,/ . " S /I
1 velocity: Changes car’s direction ; Component of acceleration parallel ! o
: = il s vl To center of circle
to velocity: Changes car’s speed
(a) Car speeding up along a circular path (b) Car slowing down along a circular path (¢) Uniform circular motion: Constant speed

along a circular path
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It Is Possible to Solve for the Velocity —
Figure 3.21

* The problem may be treated
by extracting a small portion

of the motion such that the
AV arc may be approximated

as a straight line.

 Acceleration in a uniform v
circular motion has magnitude: y
a.. = Ve
L =—
ra r £ R

\

(c¢) The acceleration in uniform eircular motion
always points toward the center of the circle.
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An Example You Can Go Try Right
Now — Example 3.8

» Refer to the worked example on page 80




Circular motion

Component of acceleration parallel to velocity:
Changes car’s speed

S U L o ->
/ P R Component of
/ 7(.&} oy wcclcralim
f N7 N\, >
_;)j >4 N perpendicular to
3 | ity: Cha g
s directio “\ 3z
s \\ a //
A\ Pid '
7 v / . - .
/ < : x 3 / Uniform circular motion: Constant speed
i Car speeding up around a circular bend { Car slowing down around a circular bend / z P
around a circular bend

AV| As v
291 _ 85 o |Av| = = As
V1 R R
The magnitude of the average
acceleration a, for At 1s
|Av|  v{As
av = — = ——
At R At
Instantaneous acceleration:
viAs vds v

a= i T Rdt . R

2

2

v
Radial acceleration: | %rad = &
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James Webb Space telescope

After traveling nearly
one million miles, the
James Webb Space
Telescope arrived at
its new home on
Monday January 24
2022.The
spacecraft’s arrival
checks off another
tricky step as
scientists on Earth
prepare to spend at
least a decade using
the observatory to
study distant light
from the beginning of
time.

Launch date: December 24, 2021

© 2016 Pearson Education, Inc.



3 Acceleration has

_ ~~ {  constant magni-
/7 Ay (_i\ tude but varying
tad direction
O/ Cad N | 7 TV
‘\ rad v
v Velocny and
Arag ",
--acceleration
N rad >4
TN S~ —Gmmi ’ are always
v perpendicular.

(a) Uniform circular motion

© 2016 Pearson Education, Inc.

Velocity and acceleration are perpendicular

only at the peak of the trajectory.

)
-
.

Usl T
= -
~
7] o &
-
a
N
- —
a N
e \
/ * Acceleration is
constant in magnitude
and direction. a

(b) Projectile motion

<y



A Problem to Try on Your Next Vacation —
Example 3.9

« Uniform circular motion
applied to a daring carnival
ride. [1 period = time for
one revolution]

© 2016 Pearson Education, Inc.



Pilot Blacks-Out

Stuka=
R=350m German war plane
/ (History Channel)

Arad = %2 V= \/amd ‘R = J350m X 53.9:“—2 = 140% = 310 mph

T T

R 69
a(rad)=5.5g =53.9 m/s"2 1mph =0.4470 m/s

Loss of consciousness for an acceleration of 5.5 ¢



The pilot takes a vertical loop Has a velocity of 700 km/hr
6g! do not exceed

use m
P2 g :98?

69 =60m/s”-1km/10°m =6-10"°km/ s

What radius should the plane 5

fly and not exceed 6g?
Y : lv| = 700%’1 at the bottom

km103m 1h

=700
v h 1km 60-60

2 2

—— = 0.64km = 640m . ,
ar =6-10°km/s

e
I
|
I




3.5  Relative Velocity in a Plane (in Two-Dimension)

W (woman) 7 (train)

| Yc yr .- Velocity of train
N— * b - ol . .
Tl Cyclist’s Uy relative to cyclist
* frame i
\ P Train’s Position of woman
',{\’ {5’;!0})—,,__——_ frame 1n bOl]’_l frames
g % %
0,_) .'uW _\']—‘
. (\f (cyclist) Oc 0, *—> o
A e 21 Xw/T
4 A Xw/c

Positions are relative: Xw/c = Xw/r + X1/C

Ywic = Yw/r t Yr/c
or, in vector form 1y /¢ = Ty + r)c

Velocities are also relative: vy /¢ = Uy + Vr/c

Pay attention to the directions (signs):

positions and velocities are vectors.

Courtesy of Wenhao Wu



crossing a stream




Boat crossing a river

S = shore
VBs = Upw + Vws
é/\.-/\_/\__
s Vg, = velocity of boat to shore
R Vpw = Veloqity of boat in Water
/ Vs = velocity of water with respect to shore

Remember for addition of two vectors, you find the x and y components of each
vector, add them quadratically, and take the square root to get the magnitude of the
resultant vector



Relative Velocity: A Matter of
Perspective — Figure 3.26

 Velocities can carry multiple values depending on the
position and motion of the object and the observer.

Vw/ic =Vw/i +VT/C

4 L T (train)
, “‘ w m/s
C (cyclist) "_
E Uy = 3.2m/s
W (woman) %&\
3
% L
A
“ UW/T = 1.0 m/S
u
u
(a) S (b) Relative velocities and their corresponding

magnitudes as seen from above
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Example: The current in a river flows due south
with a speed of 3.00 m/s. The river is 24.0 m wide.
A boat travels due east from point A on one bank
to point B on the other bank that is exactly
opposite of point A. The speed of the boat relative
to the water is 6.00 m/s. How long does it take the
boat to travel from A to B?

Question to ask: How can the boat travel east with
the current flowing south at a speed of 3.00 m/s?

Intuitive answer: The boat must have a velocity
component of 3.00 m/s toward north relative to the
water, or the velocity must point in an angle north
of east. Therefore, related to the water, the boat
should have a east-ward velocity component of

v6.002 — 3.002 = 5.20 m/s.
Time takes to cross the river is
24.0/5.20=4.62 s

Vp/w

AP p ¢B
Ub/g

Yw/g X

O
24.0m

Vb/g = Vb/w T Vw/g
Since Viigy = Viamy T Vigy = 0,
Vb/,'_v,.}, = - V,'_V/g,.}, =+ 3.00 m/s.

Therefore,

% gx vb/"“%x o \/vb/1-v vb/~,.v,_],.-

= v6.002 — 3.002 = 5.20 m/s.

Courtesy of Wenhao Wu




An Airplane in a Crosswind —

Example 3.10

A solved application
of relative motion.

Vee =Vp/a +Vac

* This is just velocity
vector addition.

@Pearson Copyright © 2020

O,/ = 100 km/h,
east

1_5P/A =
240 km/h,
north
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Oy/z = 100 km/h,
east

5P/A — 6P/E,
240 km/h, 7 north
at angle B - \



Questions 3.3 Projectile Motion

A projectile is launched at some angle to the horizontal with some initial speed vi; air
resistance is negligible.

Is the projectile a freely falling body?
What is its acceleration in the vertical direction?
What is its acceleration in the horizontal direction?

A student throws a heavy red ball horizontally from a balcony of a tall building with an
initial speed v0. At the same time, a second student drops a lighter blue ball from the same
balcony. Neglecting air resistance, which statement is true?

The blue ball reaches the ground first.
The red ball reaches the ground first.
Both balls hit the ground with the same speed.

As a projectile moves in its path, is there any point along the path where the velocity and
acceleration vectors are

perpendicular to each other?
Parallel to each other?



Questions 3.3 Projectile Motion

A passenger sitting in the rear of a bus claims that she was injured as
the driver slammed on the brakes, causing a suitcase to come flying
toward her from the front of the bus. If you were the judge in this case,
what disposition would you make? Explain.

As an apple tree is transported by a truck moving to the right with a
constant velocity, one of its apples shakes loose and falls toward the
bed of the truck. Of the curves shown

* which best describes the path followed by the apple as seen by a stationary observer on
the ground, who observes the truck moving from his left to his right?

* Which best describes the path as seen by an observer sitting in the truck?

IR NN
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