Chapter 5Applications of Newton's Laws

- To draw free-body diagrams and analyzing forces on individual objects.
- To solve for unknown quantities using Newton's $2^{\text {nd }}$ law.
- To understand kinetic and static friction forces acting on an object.
- To use Hooke's law to relate the restoring force of a spring to the amount of stretching or compression of a spring.

Applications of Newton's first law

The Conditions for a Particle to be in Equilibrium

When an object is at rest or moving with constant velocity in an inertial frame of reference (i.e. it is in equilibrium), the vector sum of all forces acting on it must be zero.

- Necessary conditions for an object to settle into equilibrium:

$$
\sum \vec{F}=0 \Rightarrow \vec{a}=0
$$

Or in component form:

$$
\sum F_{x}=0 \quad \& \quad \sum F_{y}=0
$$

- Note: $\mathbf{a}=0$ means that an object in equilibrium may be at rest or moving with a constant velocity.

Equilibrium of a "particle"

One-dimensional equilibrium

A gymnast has just begun climbing up a rope hanging from a gymnasium ceiling. She stops, suspended from the lower end of the rope by her hands. Her weight is 500 N , and the weight of the rope is 100 N . Analyze the forces on the gymnast and on the rope.

Condition for stable equilibrium: $\quad \sum \vec{F}=0 \leftrightarrow \sum F_{x}=0 ; \sum F_{y}=0$
a) This problem is about recognizing action-reaction pairs according to Newton's $3^{\text {rd }}$ law; $F_{\text {action }}=F_{\text {reaction }}$
Note: The force diagrams on the left are showing forces on the same object

These are action-reaction pairs

(a)

(c)
b) Forces on hanging gymnast

$$
\begin{aligned}
& \sum F_{y}=0 \leftrightarrow T_{1}-W=0 ; \\
& T_{1}=W ; T_{1}=500 N
\end{aligned}
$$

c) Forces on rope
$\Sigma F_{y}=T$ T $-100 N^{2}-500 N=0$;
$T_{2}=600 \mathrm{~N}$; Tension on the top of the rope.
d) Forces on ceiling (partial)

Rope exerts a downward force T_{2} on the ceiling.

5.1 Equilibrium of a Particle

Two Dimensional Equilibrium - Example 5.2 A cherry-picker

 A car engine with weight $w=2200 \mathrm{~N}$ hangs from a chain that is linked at point O to two other chains, one fastened to the ceiling and the other to the wall. Find the tension in each of the three chains, assuming that w is given and the weights of the chains themselves are negligible.

(b) Free-body diagram of engine

(c) Free-body
b) $\quad T_{1}-W=\sum F_{y}=0$; $T_{1}=W$;
c)

$$
\begin{aligned}
& \sum F_{x}=0 ; T_{3} \cos 60+\left(-T_{2}\right)=0 \cdots(1) \\
& \sum F_{y}=0 ; T_{3} \sin 60+\left(-T_{1}\right)=0 \cdots(2)
\end{aligned}
$$

1) $T_{3}=\frac{T_{1}}{\sin 60}=\frac{w}{\sin 60}=1.155 \mathrm{w}$
T_{3} is larger than the weight, because it is at an angle and its vertical component must support 'w'.
2) $T_{2}=T_{3} \cos 60=1.155 w * \cos 60=$ $0.577 w$

Summarize;

$$
\left.\begin{array}{c}
T_{1}=w \\
T_{2}=0.577 \mathrm{w} \\
T_{3}=1.155 \mathrm{w}
\end{array}\right\} \text { with } \mathrm{w}\left\{\begin{array}{l}
T_{1}=2200 \mathrm{~N} \\
T_{2}=1270 \mathrm{~N} \\
T_{3}=2540 \mathrm{~N}
\end{array}\right.
$$

These tensions are proportional to the weight.

Problem 5.1 4

Set Up: For each object use coordinates where $+y$ is upward. Each object has $a=0$. Call the objects 1 and 2, with $W_{1}=72 \mathrm{~N}$ and $W_{2}=150 \mathrm{~N}$.
Solve: (a) The free-body diagrams for each object are shown in the figure below. T_{B} and T_{C} are replaced by their x and y components.

(b) For object 2, $\sum F_{y}=m a_{y}$ gives $T_{A}-W_{2}=0$ and $T_{A}=150 \mathrm{~N}$.
(c) For object $2, \sum F_{x}=m a_{x}$ gives $T_{C} \cos 60^{\circ}-T_{B} \cos 60^{\circ}=0$ so $T_{B}=T_{C}$
$\sum F_{y}=m a_{y}$ gives $T_{B} \sin 60^{\circ}+T_{C} \sin 60^{\circ}-T_{A}-W_{1}=0$.

$$
T_{B}=\frac{T_{A}+W_{1}}{2 \sin 60^{\circ}}=\frac{150 \mathrm{~N}+72 \mathrm{~N}}{2 \sin 60^{\circ}}=128 \mathrm{~N} ; \quad T_{C}=128 \mathrm{~N}
$$

An Example Involving Two Systems -Example 5.4

- See the worked example on page 126.
- This example brings nearly every topic we have covered so far in the course.
- This is an equilibrium

(a) Idealized model

(b) Free-body diagram for bucket problem because system moves with constant speed!!
- Note: x-axis for the cart does not have to align with the horizontal direction and is different from the bucket.

Pearson

Let's Examine Applications of Newton's Second Law. \rightarrow Non-equilibrium or Dynamic Problems

$$
\begin{gathered}
\sum \vec{F}=m \vec{a} \\
\sum F_{x}=m a_{x} \quad \& \quad \sum F_{y}=m a_{y}
\end{gathered}
$$

- Although this container is on a level surface, the liquid surface is on a slant because the apparatus is being accelerated to the
 left.

Can you tell that th container is accelerated to the left?

> 5.2 Applications of Newton's Second

Law

A Review of Problem-Solving Strategy

Newton's Second Law:

$$
\begin{aligned}
& \text { in vector form } \\
& \text { in component form }
\end{aligned} \quad \sum F_{x}=m a_{x} \quad \sum F_{y}=m a_{y} .
$$

Strategy for Solving Newton's Law Problems

- Isolate the bodies in a system.
- Analyze all the forces acting on each body and draw one free-body diagram for each body.
- Apply Newton's Third Law to identify action-reaction force pairs.
- Based on the free-body diagram, set up a most convenient $x-y$ coordinate system.
- Break each force into components using this coordinate system.
- For each body, sum up all the x-components of the forces to an equation: $\sum F_{x}=m a_{x}$.
- For each body, sum up all the y-components of the forces to an equation: $\sum F_{y}=m a_{y}$.
- Use these equations to solve for unknown quantities.

Application I - Example 5.5

- This experiment works in your car, a bus, or even an amusement park ride!

(a) Low-tech accelerometer

(b) Free-body diagram for the key

$$
\left.\begin{array}{ll}
\sum F_{x}=m a_{x}, & T \text { si } \quad B=m a_{x} \\
\sum F_{y}=0, & \text { n } \mathrm{n} \text { cos } \beta+(-m g)=0
\end{array}\right\} a_{x}=g \tan \beta
$$

Clicker question

The carts in the figure are held together by ropes and are accelerating to the right. The ropes do not stretch and have negligible mass. Which of the following statements is true about the magnitudes of the tension forces exerted by the ropes on the carts?

a) Rope 2 pulls harder on cart B than on cart A.

D b) Rope 1 pulls harder on cart A than rope 2 pulls on cart B.
c) Rope 2 pulls harder on cart B than rope 1 pulls on cart A.

Application II - Example 5.6

- Acceleration
down a hill, no friction

(a) The situation

(b) Free-body diagram for toboggan

$$
\left.\begin{array}{ll}
\sum F_{x}=m a_{x}, & (m g) \sin \alpha=m a_{x} \\
\sum F_{y}=0, & n+(-m g \cos \alpha)=0
\end{array}\right\} a_{x}=g \sin \alpha
$$

What happens to the monkey and the bananas as the monkey climbs up, or releases the rope and falls, and grabs the rope to stop the fall.

(a) For the monkey to move up, $\mathrm{T}>\mathrm{mg}$. the bananas also move up.
(b) The bananas and monkey move with the same acceleration and the distance between them remains constant.
(c) Both the monkey and bananas are in free fall. They have the same initial velocity and as they fall the distance between them doesn't change.
(d) The bananas will slow down at the same rate as the monkey. If the monkey comes to a stop, so will the bananas.

Just as in the gymnast climbing the rope problem; $T-m g=m a \rightarrow a=$ constant

$$
T=m(g+a) \rightarrow T>m g
$$

Application - Example 5.7 An air track

- This problem involves two interactive systems in a common lab experiment.

From Glider free-body diagram:

$$
\begin{array}{ll}
\sum F_{x}=m a_{x}, & T=m_{1} a_{x} \\
\sum F_{y}=0, & n+\left(-m_{1} g\right)=0
\end{array}
$$

$$
\mathrm{a}=\left(\mathrm{m}_{2} \mathrm{~g}\right) /\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \quad \mathrm{T}=\left(\mathrm{m}_{1} \mathrm{~m}_{2}\right) \mathrm{g} /\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)
$$

What happens for $\mathrm{m}_{1}=0$?

Friction force exits at the contact surfaces of two objects. There are two regions of friction:

- when an object is sliding with respect to another \rightarrow kinetic-friction force
- when there is no relative motion \rightarrow static-friction force

Kinetic Friction Force f_{k}
Magnitude:
It is directly related to the normal force.

$$
f_{k}=\mu_{k} n
$$

μ_{k} : coefficient of kinetic friction
Direction:

- Parallel to the contact surface
- Opposite to the direction of relative motion

Static Friction Force f_{s}
Magnitude:
It depends. It is not fixed.
Maximum value

$$
f_{s, \max }=\mu_{s} n
$$

μ_{s} : coefficient of static friction
Direction:

- Parallel to the contact surface
- Opposed to the tendency to change the state of motion

An angle of 90 degrees between the climber and the rock gives maximum friction. Why?
le pe

Cooperative Binding of Myosin to Tubulin

ロロリヒロ－ロロコ

Molecular rail (tubulin) and motor (kinesin)

5.3 Contact Force and Friction

- We need to re-examine problems we formerly did as "ideal."
- We need to be able to find frictional forces given the mass of the object and the nature of the surfaces in contact with each other.

The frictional and normal forces are really components of a single contact force.

- There are two regions of friction:

1) when an object is sliding with respect to a surface \rightarrow kinetic-friction force
2) when there is no relative motion \rightarrow static-friction force

No Dependence on Surface Area

- The normal force determines friction.

$$
\left.\begin{array}{ll}
f_{s} \leq \mu_{s} n & \rightarrow \\
\text { no relative movement } \\
f_{s, \max }=\mu_{s} n & \rightarrow \\
\text { interface "breaks loose" } \\
f_{k}=\mu_{k} n & \rightarrow \\
\text { sliding with friction }
\end{array}\right\} \mu_{k} \leq \mu_{s}
$$

Friction Changes as Forces Change -

Figure 5.13

- Forces from static friction increase as force increases while forces from kinetic friction are relatively constant.

(a) No applied force,
box at rest.
No friction:
$f_{\mathrm{s}}=0$

(b) Weak applied force, box remains at rest. Static friction: $f_{\mathrm{s}}<\mu$

(c) Stronger applied force,
box just about to slide.
Static friction:

(d) Box sliding at
constant speed.
Kinetic friction: $f_{\mathrm{k}}=\mu_{\mathrm{k}} n$

Applications of Newton's laws

| TABLE 5-1 | Coefficients of Friction ${ }^{\dagger}$ | |
| :--- | :---: | :---: | :---: |
| | Coefficient of
 Static Friction, μ_{s} | Coefficient of
 Kinetic Friction, $\boldsymbol{\mu}_{\mathbf{k}}$ |
| Surfaces | 0.4 | 0.2 |
| Wood on wood | 0.1 | 0.03 |
| Ice on ice | 0.15 | 0.07 |
| Metal on metal (lubricated) | 0.7 | 0.6 |
| Steel on steel (unlubricated) | 1.0 | 0.8 |
| Rubber on dry concrete | 0.7 | 0.5 |
| Rubber on wet concrete | $1-4$ | 1 |
| Rubber on other solid surfaces | 0.04 | 0.04 |
| Teflon® on Teflon in air | 0.04 | 0.04 |
| Teflon on steel in air | <0.01 | <0.01 |
| Lubricated ball bearings | 0.01 | 0.01 |
| Synovial joints (in human limbs) | | |

TValues are approximate and are intended only as a guide.

A box against a wall

With what force F one should press on the box that it will not slide down and will be at rest?

5.27

Construction site has a pallet of bricks hanging on a rope, where the other side is tied to a heavy crate. $\mu_{s}=0.666$

Note: The system is not moving: Static friction

$$
f_{s}=\mu_{s} n
$$

a) What is the weight of the heaviest pallet of bricks, that can be supported as not moving?

$$
\begin{aligned}
& F_{y}=m a_{y}=n-w_{c}=0 \text { So }, n=w_{c}=250+150=400 \mathrm{lbs} \\
& f_{s}=\mu_{s} n=0.666 * 400=266 \mathrm{lbs} ; \\
& \qquad \sum F_{x}=m a_{x} \rightarrow T-f_{s}=0 \because T=f_{s}=266 \mathrm{Ibs}
\end{aligned}
$$

b) What is the friction force on the upper crate under these conditions?

$$
a_{x}=0 ; \sum F_{x}=0 \rightarrow f_{x}=0
$$

(a)

(b) Free-body diagram for moving crate

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley
Moving the box by pulling upward with a rope at an angle of 30°. Is it easier or harder than pulling horizontally, what pulling force is needed in both cases? $\mu_{k}=0.4$ and $w=500 \mathrm{~N}$ Note: The magnitude of $n<w$, due to the upward component.

$$
f_{k}=\mu_{k} n
$$

For constant velocity moving;

$$
\begin{gathered}
\sum F_{x}=T \cos 30-f_{k}=T \cos 30-0.4 * n=0 \\
\sum F_{y}=T \sin 30+n-500 N=0 \because n=500-T \sin 30 \\
T \cos 30-0.4(500-T \sin 30)=0 \\
T=188 N \text { and } n=406 N \\
\theta=0, \text { then } \mathrm{n}=\mathrm{w} \text { and } T-0.4 \mathrm{x} 500=0 T=200 \mathrm{~N}
\end{gathered}
$$

The weight of the box is 500 N . For "breaking loose", a horizontal force of 230 N is needed. For "keep moving" at constant velocity a force of 200 N is needed. Work out μ_{s} and μ_{k} (friction coefficients)

Moving the box by pulling horizontally.
b)

$$
f_{s, \max }=\mu_{s} n
$$

$$
\begin{gathered}
\sum F_{x}=m a \rightarrow a=0 ; v=\text { constant } \\
\sum F_{y}=n-W=n-500 \mathrm{~N}=0 \rightarrow n=500 \mathrm{~N} \\
\sum F_{x}=T-f_{s}=230 \mathrm{~N}-f_{s, \max }=0 \rightarrow f_{s, \max }=230 \mathrm{~N} \\
\mu_{s}=\frac{f_{s, \max }}{n}=\frac{230 \mathrm{~N}}{500 \mathrm{~N}}=0.46
\end{gathered}
$$

c) Crate moves, so

$$
f_{k}=\mu_{k} n
$$

$$
\begin{gathered}
\sum F_{y}=n-W=n-500 N=0 \rightarrow n=500 \mathrm{~N} \\
\sum F_{x}=T-f_{k}=200 \mathrm{~N}-f_{k}=0 \rightarrow f_{k}=200 \mathrm{~N} \\
\mu_{k}=\frac{f_{k}}{n}=\frac{200 N}{500 \mathrm{~N}}=0.4
\end{gathered}
$$

(a)

(b) Crate just as it

(c) Crate moving at constant speed

Clicker question

To push or to pull a sled, what is more efficient?

a) pushing

b) pulling
c) the same
d) depends on the magnitude of the force

To push or to pull a sled?

Friction is less when you pull, since F_{N} is less

5-40:

Note: Nothing is moving. The coefficient of Static friction is

$$
f_{s}=\mu_{s} n ; \mu_{s}=0.8
$$

b) What is the normal force exerted by surface on the box?

$$
\begin{gathered}
\sum F_{y}=m a_{y}=0 \rightarrow n-F \sin 30-W=0 \\
n=W+F \sin 30=125 N+75 * \sin 30=163 N
\end{gathered}
$$

a) Make a free body diagram.
c) What is the friction force on the box

$$
\begin{aligned}
& \sum F_{x}=m a_{x} \rightarrow f-F \cos 30=0 \\
& f=F \cos 30=65 N
\end{aligned}
$$

d) What is the largest possible friction force?
$a=0$

$$
f_{s}=\mu_{s} n=0.8 * 163=150 \mathrm{~N}
$$

e) Replace the push with a 75 N pull, what is n ?

$$
\begin{aligned}
& \sum F_{y}=m a_{y} \rightarrow n+F \sin 30-W=0 \\
& n=W-F \sin 30=88 N
\end{aligned}
$$

f) What is the largest possible friction force for the 75 N pull?

$$
f_{s}=\mu_{s} n=0.8 * 88=70 \mathrm{~N}
$$

Box on a horizontal table

An 80 N box is pulled at an horizontal table. Kinetic friction is $1 / 4$,static friction is $1 / 2$. What is the friction f on the box if the tension T on the rope is a. $0 \mathrm{~N}, \mathrm{~b} .25 \mathrm{~N}, \mathrm{c} .39 \mathrm{~N}, \mathrm{~d} .41 \mathrm{~N}, \mathrm{e} .150 \mathrm{~N}$?
5.25. Set Up: Assume the box is initially at rest. The box remains at rest and friction is static if the pull is less than the maximum possible static friction force. If the pull is larger than this, the box moves and the friction is kinetic.

Solve: $n=W=80 \mathrm{~N}$. The maximum possible static friction force is $\mu_{\mathrm{s}} n=40 \mathrm{~N}$. The kinetic friction force is $\mu_{\mathrm{k}} n=20 \mathrm{~N}$. The actual static friction force is only as large as necessary to prevent motion.
(a) $f_{\mathrm{s}}=0$ and the box remains at rest. (b) $f_{\mathrm{s}}=25 \mathrm{~N}$ and the box remains at rest.
(c) $f_{\mathrm{s}}=39 \mathrm{~N}$ and the box remains at rest. (d) The box slides and $f_{\mathrm{k}}=20 \mathrm{~N}$. (e) The box slides and $f_{\mathrm{k}}=20 \mathrm{~N}$.

Dynamic motion problem: Two boxes and a pulley

Two boxes and a pulley with friction $\mu_{k}=0.2$
(a) What is the tension in the rope?
(b) What is the tension in the rope?

Y: $\quad F_{N}=m_{1} g=49 N \quad$ and $F_{f r}=\mu_{k} F_{N}=0.2 * 49=9.8 N$

$$
\begin{aligned}
& F_{T}-F_{f r}=m_{1} a \rightarrow F_{T}=F_{f r}+m_{1} a \\
& m_{2} g-F_{T}=m_{2} a \rightarrow F_{T}=m_{2}(g-a)
\end{aligned}
$$

$\rightarrow m_{1} a+m_{2} a=m_{2} g-F_{f r}$

$$
\begin{aligned}
& \text { (a) } a=\frac{m_{2} g-F_{f r}}{m_{1}+m_{2}}=1.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \text { (b) } F_{T}=m_{2}(g-a)=17 \mathrm{~N}
\end{aligned}
$$

An Example Involving Two Systems Example 5.4 Two boxes

- This example brings nearly every topic we have covered so far in the course.
- This is an equilibrium problem because system moves with constant speed!!

(a) Idealized model

(c) Free-body
(b) Free-body
diagram for bucket
- Note: x-axis for the cart does not have to align with the horizontal direction and is different from the bucket.

The skier with friction

a) What is acceleration?

$$
\mu_{\mathrm{K}}=0.01
$$

Winning (acceleration) does not depend on mass!

Skier with friction

Initial step: select the right reference frame: it's up to us, and is a matter of convenience!
a) What is acceleration? ($\mu_{k}=0.1$ and $\theta=30^{\circ}$)

$$
\begin{gathered}
\sum F_{x}=m a_{x} \rightarrow F_{g x}=m g \sin 30 \text { and } F_{g y}-m g \cos 30=0 \quad \because F_{g y}=m g \cos 30=F_{N} \\
m g \sin 30-\mu_{k} F_{N}=m a_{x} \rightarrow m g \sin 30-\mu_{k} m g \cos 30=m a_{x} \\
a_{x}=0.41 g \quad \because g=9.8 \frac{m}{s^{2}} \\
\rightarrow a_{x}=4 \frac{m}{s^{2}}
\end{gathered}
$$

b) Starting from rest, what is the velocity of the skier after 4 second?

$$
v_{x}=v_{o}-a_{x} t=0+a_{x} t=4 * 4=16 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

How Much Effort to Move the Crate?

- Dynamics as in the last chapter with a new force.
- See the worked solution on page 135.

(a) Pulling a crate

(b) Free-body diagram for crate just before it starts to move

(c) Free-body diagram for crate moving at constant speed
5.59 A block friction $\mu_{s}=0.25$, a knot and two weights $W(A)=60 \mathrm{~N} ; w=12 \mathrm{~N}$
a) Find the friction force on the block at $a=0$, for both objects. The tension in the vertical wire is ' w '. Applying $\sum F=m a$ to the knot and to the block.

$$
\left.\begin{array}{l}
\sum F_{y}=m a_{y} \leftrightarrow T_{2} \sin 45=w \\
\sum F_{x}=m a_{x} \leftrightarrow T_{2} \cos 45=w
\end{array}\right\} \sin 45=\cos 45 \rightarrow T_{3}=w=12 N
$$

b) Find the maximum weight for which the system remains at rest.
$f_{s, \max }=\mu_{s} m g=0.25 * 60 N=15 N \rightarrow w=f_{s, \max }=15 N$

(b)

(a)

Forces Applied at an Angle

- The previous example has one new step if the
force is applied at an angle.

(a) Pulling a crate at an angle

(b) Free-body diagram for moving crate

A Toboggan on a Steep Hill with Friction -

- now at constant speed.

(a) The situation

(b) Free-body diagram for toboggan
$\left.\begin{array}{lc}\sum F_{x}=0, & (m g) \sin \alpha+\left(-f_{k}\right)=(m g) \sin \alpha+\left(-\mu_{k} n\right)=0 \\ \sum F_{y}=0, & n+(-m g \cos \alpha)=0\end{array}\right\} \mu_{k}=\frac{\sin \alpha}{\cos \alpha}=\tan \alpha$

Example: Two boxes of masses m_{1} and m_{2} are pushed together by a horizontal force F to accelerate to the right on a leveled table surface as shown. The coefficient of kinetic friction between either of the boxes and the table surface is μ_{k}. Calculate the acceleration and the normal force between the boxes.

$$
\begin{aligned}
& F-f_{k 1}-f_{k 2}=m_{2} a+m_{1} a=\left(m_{1}+\right. \\
& \left.m_{2}\right) a \\
& a=\left(F-f_{k 1}-f_{k 2}\right) /\left(m_{1}+m_{2}\right) \\
& \quad=\left(F-\mu_{\mathrm{k}} m_{1} g-\mu_{\mathrm{k}} m_{2} g\right) /\left(m_{1}+m_{2}\right) \\
& n=f_{k 2}+m_{2} a=\mu_{\mathrm{k}} m_{2} g+m_{2} a \\
& \quad=\left[m_{2} /\left(m_{1}+m_{2}\right)\right] F
\end{aligned}
$$

Additional Examples

A box having an initial velocity $10 \mathrm{~m} / \mathrm{s}$ enters a region of a leveled rough surface and slides a distance of 20 m before it reaches a stop. Assume that the acceleration due to friction is a constant. Calculate the coefficient of kinetic friction.

Solution:

- Initial velocity $v_{1}=10 \mathrm{~m} / \mathrm{s} ; \quad$ Final velocity $v_{2}=0.0 \mathrm{~m} / \mathrm{s}$
- What is the acceleration?

$$
v_{2}^{2}-v_{1}^{2}=2 a d \quad a=\left(v_{2}^{2}-v_{1}^{2}\right) / 2 d=-v_{1}^{2} / 2 d=-2.5 \mathrm{~m} / \mathrm{s}^{2}
$$

- Free-body diagram and Newton's Second Law

$$
\begin{array}{ll}
y \text {-axis: } & n-m g=0 \\
x \text {-axis: } & -f_{\mathrm{k}}=m a \\
\text { and } & f_{\mathrm{k}}=\mu_{\mathrm{k}} n \\
& \\
\mu_{\mathrm{k}}=f_{\mathrm{k}} / n=-m a / m g=-a / g=2.5 / 9.8=0.26 \\
\hline
\end{array}
$$

Example: Box of mass m is pushed up an incline by a force F parallel to the incline. The coefficient of kinetic friction between the box and the incline is μ_{k}.

Given: F, m, μ_{k}, and θ
Find: n and a
Solutions:

Weight and its components $W=m g W_{x}=-m g \sin \theta \quad W_{y}=-m g \cos \theta$

$$
\begin{array}{ll}
x \text {-axis: } & F-m g \sin \theta-f_{k}=m a \quad f_{k}=\mu_{\mathrm{k}} n=\mu_{\mathrm{k}} m g \cos \theta \\
& a=\left(F-m g \sin \theta-\mu_{\mathrm{k}} m g\right) / m \\
y \text {-axis: } & n-m g \cos \theta=0 \quad n=m g \cos \theta
\end{array}
$$

What if some other quantities are given and you are asked to calculate some different quantities?
Consider Problem 9 on Term Exam 1 from 2015.

Forces in Fluids - Figure 5.19

- This topic is fully developed in advanced courses.
- Conceptually, as objects fall through "thicker" liquids, they experience a drag force.
© 2016 Pearson
Education, Inc.

Clicker question
An adult and a teenager go skydiving. The adult weighs twice as much as the teen, but they use identical parachutes that exert identical drag forces. After the parachutes have opened and the two people have reached terminal speed, how do their speeds compare?
a) They are equal.
b) $\mathrm{v}_{\text {adut }}=2 \mathrm{v}_{\text {teen }}$.
c) $v_{\text {adut }}=\sqrt{2} v_{\text {teen }}$.

At terminal velocity $\mathrm{mg}-\mathrm{D} \mathrm{v}_{\mathrm{T}}{ }^{2}=0$

5.4 Elastic Force

Spring, Spring Restoring Force, and Hooke's Law
Hooke's Law on spring restoring force:

- In magnitude

$$
F_{s p r}=k \Delta L
$$

- Direction: Opposed to length change \longrightarrow restoring force
- A general expression taking care of the direction

$$
F_{s p r}=-k x
$$

- x is measured with respect to the equilibrium position

Example 5.14
A vertical spring balance scale stretches 1.00 cm when a 12.0 N weight is hung on it. If the 12.0 N weight is replaced by a 1.50 kg fish, by what amount is the spring stretched?

Answer:
Spring constant $k=F / \Delta L=(12.0 \mathrm{~N}) /(0.0100 \mathrm{~m})=1200 \mathrm{~N} / \mathrm{m}$ Stretching $=F / k=m g / k=0.0123 \mathrm{~m}=1.23 \mathrm{~cm}$

Elastic Forces

- Springs or other elastic material will exert force when stretched or compressed.
- The magnitude of the spring force $F_{\text {spring }}$ is given by Hooke's Law:

$$
F_{\text {spring }}=k \Delta L
$$

Where k is spring constant $[\mathrm{N} / \mathrm{m}]$ and ΔL [m$]$ is distance the spring is stretched or compressed from its equilibrium length.
© 2016 Pearson
Education, Inc.

Stretch a Spring to Weigh Objects -

 Example $5.14 \quad$ Fishy business- The force settings on the spring are calibrated with mass standards at normal earth gravity.
- The spring scales are often calibrated in force (N) and mass (kg).

© 2016 Pearson Education, Inc.
(a) The scale stretched by a known weight
(b) The scale stretched by a known mass
(c) Free-body diagram for the fish

Elastic forces

Example with massless and nonstretchable rope \& massless and frictionless pulley.

Given: m and M .

Answer the questions for the following two cases.
(a) If the table top is frictionless.

Question 1: what is the condition under which M accelerates downward?

Question 2: If M accelerates downward, calculate the acceleration a and the tension in the rope T .

(b) Assume the coefficient of friction between m and the table top to be to be $\mu_{\mathrm{s}}=\mu_{\mathrm{k}}=\mu$.

Question 1: what is the condition under which M accelerates downward?

Question 2: If M accelerates downward, calculate the acceleration a and the tension in the rope T .

Dynamic motion problem: Two boxes and a pulley

Two boxes and a pulley with friction $\mu_{k}=0.2$
(a) What is the tension in the rope?
(b) What is the tension in the rope?

Y: $\quad F_{N}=m_{1} g=49 N \quad$ and $F_{f r}=\mu_{k} F_{N}=0.2 * 49=9.8 N$

$$
\begin{aligned}
& F_{T}-F_{f r}=m_{1} a \rightarrow F_{T}=F_{f r}+m_{1} a \\
& m_{2} g-F_{T}=m_{2} a \rightarrow F_{T}=m_{2}(g-a)
\end{aligned}
$$

$\rightarrow m_{1} a+m_{2} a=m_{2} g-F_{f r}$

$$
\begin{aligned}
& \text { (a) } a=\frac{m_{2} g-F_{f r}}{m_{1}+m_{2}}=1.4 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& \text { (b) } F_{T}=m_{2}(g-a)=17 \mathrm{~N}
\end{aligned}
$$

Example with massless and nonstretchable rope \& massless and frictionless pulley.

Given: $\mathrm{m}_{1}, \mathrm{~m}_{2}$, and θ.
Answer the questions for the following two cases.
(a) If the incline is frictionless.

Question 1: what is the condition under which m_{2} accelerates downward?

Question 2: If m_{2} accelerates downward, calculate the acceleration a and the tension in the rope T.

(b) Assume the coefficient of friction between m_{1} and the incline to be $\mu_{\mathrm{s}}=\mu_{\mathrm{k}}=\mu$.

Question 1: what is the condition under which m_{2} accelerates downward?

Question 2: If m_{2} accelerates downward, calculate the acceleration a and the tension in the rope T .

A box rests on a frozen pond (assume it to be frictionless and horizontal). If a fisherman applies a horizontal force with a magnitude 48 N to the box and produces an acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$, what is the box's mass?

Solution: This problem is a an application of Newton's second law, $\mathrm{F}=$ ma. Here we are given the force (48 N) and the acceleration ($3 \mathrm{~m} / \mathrm{s}^{2}$). To find the mass we re-arrange the equation to solve for m.

$$
\frac{F}{a}=\frac{48}{3}=16=m \quad \mathrm{~m}=16 \mathrm{~kg}
$$

A table with a weight equivalent to 800 N is slid across a floor with friction. The pushing force has a magnitude of 100 N . If the table moves with constant speed, the friction force must be...

Solution: Because we are told the speed is constant, this means that there is no acceleration (or more specifically, the acceleration is 0). This would indicate that the pushing force and friction force have canceled out completely, thus telling use that the friction force is equal in magnitude and opposite in direction to the pushing force. Thus, the friction force is 100 N .

Two boxes connected by a rope are pulled across a horizontal floor. There is friction between the floor and the boxes. Which way would the force due to friction point in each of the box's free-body diagrams?

Solution: Friction always points opposite the direction of motion.

Two figure skaters, one weighing 625N and the other 725N, push off against each other on frictionless ice. If the lighter skater travels at 1.74 m / s, how fast will the heavier one travel?

Solution: There are many ways to solve this problem, but the simplest way is to use conservation of energy \& Newton's $3^{\text {rd }}$ law. If the skaters were initially at rest, and then moved by pushing off against each other (over a frictionless surface), their kinetic energies will be equal to each other. Knowing their masses (indirectly from their weight) and one of the skater's velocity, we can then solve for the other skater's velocity.

$$
\frac{1}{2}\left(\frac{\omega_{1}}{g}\right) v_{1}^{2}=\frac{1}{2}\left(\frac{\omega_{2}}{g}\right) v_{2}^{2}
$$

Canceling the common terms (such as the $1 / 2$ and g), and then solving for v_{2}, we get:

$$
\sqrt{\frac{w_{1} v_{1}^{2}}{w_{2}}}=\sqrt{\frac{625(1.74)^{2}}{725}}=1.6=v_{2} \quad v_{2}=1.6 \mathrm{~m} / \mathrm{s}
$$

Thanks for your attention

A plane, a pulley and two boxes

What can be the mass of m_{2} for this system, so that it doesn't move?

Inclined plane with two boxes

(case ii)

Two boxes and a pulley with friction $\mu_{s}=0.4$ and $\theta=37^{\circ}$
y-motion:

$$
\begin{aligned}
& F_{N}-m_{1} g \cos \theta=m_{1} a_{y}=0 \rightarrow F_{N}=m_{1} g \cos \theta \\
& F_{f r}=\mu_{s} F_{N}=0.4 * m_{1} g \cos 37
\end{aligned}
$$

x-motion:

$$
m_{1} g \sin \theta-F_{T}-F_{f r}=m_{1} a_{x}=0 \quad \because a_{y}=0 \quad F_{T}=m_{2} g
$$

Static case $\rightarrow F_{T}=m_{1} g \sin \theta-F_{f r}=m_{2} g$
$m_{1} g \sin \theta-\mu_{s} m_{1} g \cos \theta=m_{2} g$, divide by g

$$
\rightarrow m_{2}=m_{1} \sin \theta-\mu_{s} m_{1} \cos \theta=2.8 \mathrm{~kg}
$$

$$
m_{1} g \sin \theta-F_{T}+F_{f r}=m_{1} a_{x}=0 \quad \because a_{x}=0
$$

Static case $\rightarrow F_{T}=m_{1} g \sin \theta+\mu_{s} m_{1} g \cos \theta=m_{2} g$
$\because m_{2}=\frac{F_{T}}{g}=9.2 \mathrm{~kg}$
$\because 2.8 \mathrm{~kg}<m_{2}<9.2 \mathrm{~kg}$

A plane, a pulley and two boxes

$$
\begin{aligned}
& \mu_{k}=0.3, m_{2}=10 \mathrm{~kg} \text { and } \theta=37^{\circ} \\
& m_{2} \text { will fall and } m_{1} \text { will rise }
\end{aligned}
$$

Two boxes and an Inclined plane with kinetic friction

Given that $\sum F=m a$;

$$
\begin{aligned}
& F_{T}-m_{1} g \sin \theta-\mu_{k} F_{N}=m_{1} a \rightarrow \\
& \text { since } m_{2} \text { also accelerates } \quad F_{T}-m_{2} g=-m_{2} a
\end{aligned}
$$

$$
\begin{gathered}
F_{T}=m_{2}(g-a) \\
m_{1} a=m_{2}(g-a)-m_{1} g \sin \theta-\mu_{k} F_{N} \rightarrow F_{N}=m_{1} g \cos \theta \\
\because a=\frac{m_{2} g-m_{1} g \sin \theta-\mu_{k} m_{1} g \cos \theta}{m_{1}+m_{2}}=0.079 g=0.78 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
\mathrm{~m} 2 \gg \mathrm{~m} 1 \quad \mathrm{a}->\mathrm{g}
\end{gathered}
$$

Two boxes and an Inclined plane with kinetic friction

Given that $\sum F=m a$;

$$
\begin{aligned}
& F_{T}-m_{1} g \sin \theta-\mu_{k} F_{N}=m_{1} a \rightarrow \\
& \text { since } m_{2} \text { also accelerates } \quad F_{T}-m_{2} g=-m_{2} a
\end{aligned}
$$

$$
\begin{gathered}
F_{T}=m_{2}(g-a) \\
m_{1} a=m_{2}(g-a)-m_{1} g \sin \theta-\mu_{k} F_{N} \rightarrow F_{N}=m_{1} g \cos \theta \\
\because a=\frac{m_{2} g-m_{1} g \sin \theta-\mu_{k} m_{1} g \cos \theta}{m_{1}+m_{2}}=0.079 g=0.78 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
\mathrm{~m} 2 \gg \mathrm{~m} 1 \quad \mathrm{a}->\mathrm{g}
\end{gathered}
$$

