Chapter 6 Circular Motion and Gravitation

e To understand the dynamics of circular motion.

e To study the application of circular motion as it applies to Newton's law of

gravitation.

e To examine the idea of weight and relate it to mass and Newton's law of

gravitation.

e To study the motion of objects in orbit (satellites) as a special application of

Newton's law of gravitation.
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In Section 3.4

 We studied the kinematics of circular motion.

— Centripetal acceleration
— Changing velocity vector
— Uniform circular motion

« We acquire new terminology.
— Radian
— Period (T)
— Frequency (f)

How many degrees are in one radian ?
0 = g —> ratio of two lengths
(dimensionless)

S 2nr
—=——z=2ntrad = 360°
r T 360° 360°
1rad = o = e28 = 57° .

.. 1rad 57°
Factors of unity ee O T

1 radian is the angle subtended at the
center of a circle by an arc with length
equal to the radius.
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Velocity Changing from the Influence of a
— Figure 6.1

rad

- Areview of the relationship between -\
vanda_, s B
ad // QAo a..q
- The velocity changes direction, 5 A Gra \I
not magnitude. | L
\\ Arad v
« The magnitude of the centripetal % p
. . rad &"d r
acceleration is: AR ot
[ 5] ‘—’H_’
) [ Y
B0 =
ad R

 In terms of the speed and period (time to make one complete
revolution)

2R 47°R
Z? = Qg = T2
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A wheel with radius 0.5m is rotating at a constant angular speed of 3 rad/s. What is
the linear speed of a point on the rim of the wheel?

Solution: In this question the relationship between angular velocity and linear
velocity must be known. From the definition of angular speed, it is the number of
radians per second. This is given as:

21

w=?

Where T is the period of rotation (i.e. the amount of time it takes for one full
rotation). We see from the formula sheet that the relation for linear velocity has
these values in it, giving the relationship & answer:

v = ? — wR = (3)(0.5) = 1.5 v =15 m/s

1 rad=360°/ 2t =57.3 9

1rev/s = 2mrad/s



Circular motion and Gravitation
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A Review of Uniform Circular Motion----Section
3.4

\elocity: tangent to the circle with constant magnitude v, = v, = v

2
Acceleration: Arag = %, always pointing toward the center of the

circle.
known as the centripetal acceleration

A new concept

Period (T, in s): Time for the object to complete one circle.

New relationships between v, R, and T:

\elocity V= ?

: v?  4m®R
Acceleration: Qad =7 = 1z

Another new concept

Frequency (f, in s, or, Hz): revolutions per second.

Relationship between T and f: f=1T

(a) A point moves a distance As at
constant speed along a circular path.

-

I
I
I
|

\

(¢) The acceleration in uniform circular motic
always points toward the center of the circle.



6.1 Force in Circular
Motion

With a centripetal force provided by
a string, the object moves along a
circular orbit

Question: How can an object of mass m maintain
its centripetal acceleration?

Answer: A centripetal force (pointing to the center
of the circle) must act on the object to maintain the
centripetal accelertion.

The magnitude of the net centripetal force:

2
I:net - I:rad - m?

2
Note: m = itself is not a force. It is equal to F .
R

————
- i~

. \
string breaks. x|

£
Q — )
4

I/r//\Fra d \\\‘
il Suddenly, the \ \\
I

I

A

\

\

In the absence of a
centripetal force, the object
moves at a constant velocity

o1
«\
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Example 6.1 Model Airplane on a
String The plane flies horizontally, so the
Given: mass m = 0.500 kg vector sum of lift and weight is zero.
radius R = 5.00 m . y
period T = 4.00 s. ) I
Find: Tension force in the string, F+. T‘v’ = ﬁm‘_
_ W
Z K x = MOyqq, v
1.72
FT = m-—-—
(b) Free-body diagram
Z E, =0, ‘ with the horizontal x-axis
y (a) Sketch (from above) pointing toward the center
Flift + (—mg) =0 of the circle and the y-axis
pointing up vertically
. 2R
with V=
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A Tether Ball Problem — Example 6.2

- Refer to the worked example on page 156.

(a) The situation (b) The forces on the ball (c¢) Free-body diagram
of the ball
27R . v* Ar?
=" Y F=ma,, Fsing=m—=m—
T T
R=Lsing Y F, =0 F. cosfB+(-mg)=0
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Conical Pendulum Tether Ball
Problem — Example 6.2

Center-seeking Force: Tension




Example 6.2 A Tether Ball Problem

Given: mass m,
length of string L
period T

Find: Tension in the string, F-.
Angle with vertical, g

YE. =ma,,y, Frsinf = m%z = m4T—7T22
X E =0, Frcosf + (—mg) =0
with =22

and

(a) The situation (b) The forces on the ball (¢) Free-body diagram
of the ball

v? 4m?R  4m’Lsinf

Frsinfd = m—o =m—7 m 2
_ 47T2L gTZ
br=m—07 and  cosp =




Conical Pendulum

What is the period of this conical pendulum ?
2
a, =" R =Lsingand T ===

_ 2mR.»1  4m?R
S0; ar = ()°- =

X F,=ma, =Fcosf —mg =0
> FcosO=mg - F = g

cos 0 ,
. mv mg sin 0

E., =ma, =ma, = Fsinf = =

LB, X r R cos 6
s a, =gtanf
sin@  4m?R 4m?R  4m?Lsin @
So; a, =2 =—5 2 tanf = —5—=——;
cos 6 T T4g T4g

T =21 LC;S ® (the period is independent of mass)

All information is in
the equations in red



6.5 T } \\

O

30" ! Fcos30

30.0°\ g,
From a Brazos 2
county fair ]
\
The “Giant Swing”: ol

rrrrrr ight © 2007 Pearson Education, Inc. publishing as Addison Wesley

. a) The person moves on a radius of R=3+5sin30=5.5m
a) Make a free body diagram ) P

_ _ _v? d T = 2"k

of the seat including the ar =4 and T'=—=

person on it.
b) Find the time for one b) YF,=ma, > Fcos30=mg - F = —2

) - y y cos 30
revolution for the indicated _ mv?  mg sin 30
Y E =ma, 2 Fsin30 = =2

angle of 30° x X R cos 30
c) Does the angle depend on v=,/Rgtan30 = V5.5 + 9.8 * tan30 = 5.58

the weight of the T =255 _ 19

passenger? 5.58

c) The net force is proportional to mass that divides out in
F = ma .The angle is independent of mass.



Example 6.3
Rounding a Flat Curve, page 157

Given: radiusR=250m
1, =0.90

Find: Vax

Solution:

The source of centripetal force is static friction force provided by the tires.

2

S =man, f=m with £, = 0= 4, (m)

ZE = O, n +(—mg) =0 = vmax = \/:u\gR

Equalize the maximum friction force to the force required by circular motion (m/R) v, 2



Given: 1 =50m, m= 1000 kg, v = 14=and u, = 0.6
Un-Banked Curve *

Fy Friction force is larger than radial force
A F¢r > E. (no skidding)

Friction force is smaller than radial force

2= = Fy; F¢, < E. (skidding)
Fy =|— F;| = mg = 1000 = 9.8 = 9800 N
Frr = ugFy = 0.6 9800 = 5900 N

FGlmg vz 142
Fy =ma, = m— = 1000 «—- = 3900 N

So, no skidding at u, = 0.6

By changing friction to u, = 0.25
Frr = ugFy = 0.25 %9800 = 2500 N < F. (Skidding)

The maximum safe velocity
XE, =ma,=Fy=mg=02>Fy=mg

172
Y. E. =ma, =ma, = m-—

Ffr,max = UsFy = ugmg = m—-

“ VUmdy = \ASGT

2
Umax
T



6-52 . As the bus rounds a flat curve at constant speed, a package
suspended from the luggage rack on a string makes an angle with the

vertical as shown. y

Suspension point of
Tk’/ luggage compartment

What is the velocity of the bus? |
|

What is the radial :

acceleration?

b = :

Package |
\,\l
What is the radius of the Tsin30
Curver) g m e 50 N —-- Centre of curvature of
' the curve

2 FE,=ma, =0->Tcos30—-mg =0

mg

cos 30

2

Y. E, =ma,>Tsin30 = mv—

rT sin 30 rsm 30
= ,/grtan30
CcoS 30

S = \/9.8 % 50 * tan30 = 16.8?




Example 6.4 Rounding a Banked Curve,
page 158

No need to rely on friction.

= The horizontal component of
the normal force is the source
__________ of the centripetal force.

. Given: radius R =250 m
Mx - Design: V,., = 25 m/s
mg Find: Jo;
Y E, =ma,.q, nsinfs = mvg : v2 5
nsinf = m— v
—_— P R tangf = T

YFE,=0, ncosp+(—mg)=0 ncosg = mg



Rounding a Banked Curve — Example 6.4

* The centripetal force comes only from a component of
normal force

F
W

2
= I = U— 2
Y F,=ma,, nsing=m ~ tan,Bzu—R
_ _ g
Y F, =0, ncosf+(-mg)=0
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No Skidding on Banked Curve




No Skidding on Banked Curve

The key to this problem is to realize that the net force F,,.; causes the car to move along the curve.
Fysin@ + f,, cos 0 = Fy ¢
FycosO —F; — f,sin0 =0 =~ F;, =mgand f, = usFy
172

Fret = Frqq = Maygq = m?

Use;
YE,=ma, =0
172

YE =ma, =ma,, g = m-—

2
FysinO + usFycos0 = F, . = mvT = Fy (sin 0 + ug cos 0)...(1)
Fy cos6@ — usFy sinf = F; = mg = Fy (cos 0 — ug sin 0).......... (2)

Divide equation (1) by equation (2);

(sinf + pgcos @)  v?

(cos @ — ugsinf) E

B (sin@ + ug cos )
ve e (cos 8 — ussin0)

Note:

For special case u,=0;
2

v
Vdesign = \/W and tan @ = p=

For special case 6=0°;
“ Vgesign = VHsgT (unbanked curve) Y




6-51: When the system rotates about the rod the strings are extended as
shown. (The tension in the upper string Ty 1s 80 N)

- a) The block moves in a circle of radius

1-25m r =,/(1.25m)2—(1.00m)2= 0.75m
Each string makes an angle 6 with the vertical pole

1.00
cosf =— - 0 =36.9°
1.25
1.25m 2

2 This block has an acceleration of a, = v?

2.00 m | |4.00kg

b) What is the tension in the lower string?

YFE,=ma, =0->Tycosf —T, cosf —mg =0
mg o 4.00kg * 9.8
cosf c0s36.9

o TL == TH - == 31N

+ C€) What is the speed of the block?
2
YE =ma,>(Ty +T,)sinf = mUT
= Jr(TH+TL) sinf _ \/O.75(80+31)Sin36.9 _ 3_53%

- m 4




6.2 Motion in a Vertical
Circle

Example 6.5 Dynamics of a Ferris
wheel at a constant speed, page 158

Given: m=60.0kg
R=8.00m
T=10.0s (v=2nR/T)

Find the normal force:
(a) at the top (n+)
(b) at the bottom (ng)

(a) At the top

172
nT—mg=maT=m(—?) np =mg—m-—

(b) At the bottom

2

v - v v?
nB—mg=maB=m(?) nT—mg-I—m?—m(g+?)

at the bottom
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Work out the radial acceleration of the moon around the earth.

2 27R
a, = % and v = % g=9.8 m/s?

T =273d x 214dh * 361°:S — 2.36x10%s and R = 3.84x10%m

Soiv=1022 1022 @.=272+10"*m/s?2 ~3+10"*% ¢
S

sh2






Ferris wheel




Ferris wheel

| myg
;-. Top ;'. Bottom ,:
‘ R x_h?;? 1JFH o
.T \5"-.____________..**:
Top: l’
2
a,=—and T = 2R =9
v Bottom:
5 _ _ mv? . Ei
ZFyzmay=FN—mg=—m: Fy —mg ==~ Fy=mg+3)

The force which the seat applies to the
passenger is smaller than his weight.

2
For, % = g passenger is starting to fly

off.

seat.

Passenger in Ferris wheel is pressed into the




Model Airplane on a String — Example 6.1

* How hard must you pull on the string to keep the airplane flying in a circle?
« T=4s m=0.5 kg

The plane flies horizontally, so the
vector sum of lift and weight is zero.

ey 3

b’

(b) Free-body diagram
of plane (from in front
(a) Sketch (from above) or behind)

u2
rad? F}:mE V2:(TR/m)2

r, =0, Flz'ﬁ+(‘mg)20

F. =ma

A
T o
a

© 2016 Pearson Education, Inc.



snowboarding

The net force F always down, but a=0 in A. a=positive in B, a=negative in C

C. Just like elevator accelerating down F-mg=m(-a) F=m(g-a)



Clicker question

You're snowboarding down a slope. The free-body
diagram in the figure represents the forces on you
as you

F
a) go over the top of a mogul.
b) go through the bottom of a hollow
between moguls. lT/'

c) go along a horizontal stretch.

d) go along a horizontal stretch or over
the top of a mogul.

© 2016 Pearson Education, Inc.



Clicker question
You whirl a ball of mass m in a fast vertical circle

on a string of length R. At the bottom of the circle,
the tension In the string Is five times the ball's
weight. The ball's speed at this point is given by
a) VOR
D) V4gR
c) V6gR
d) 6VOR

F + =5mg = mg +(m/R) v?



Clicker question
You whirl a ball of mass m in a fast vertical circle

on a string of length R. At the top of the circle, the
tension in the string Is five times the ball's weight.
The ball's speed at this point is given by

a) VOR
b) V4gR
c) V6gR
d) 6VOR

F ; =5mg = -mg +(m/R) v?



6.3 Newton's Law of
Gravitation

Properties of Gravitation Forces

e Always attractive.

e Directly proportional to both the masses involved. \ zont

e Inversely proportional to the square of the center-to- F,
center distance between the two masses. r

e Magnitude of force is given by: % m,

m.m
— 17D,
r Fg(lon2)_Fg(2onl)

e G is the gravitational constant:

G=6.674x10"" N-m”/kg”’

Courtesy of Wenhao Wu



Gravitation

Newton’s Law of Gravitation

_ Gm,m,

f :
g r2 ,_t";.

G=gravitational constant = 6.673(10)x10™*Nm? /kg°

F

Note: The weight o of a body of mass m on the earth's surface with

radius R;. is Gm. -m Gm,
@®=mg = - or g=—;
RE RE




Clicker question

Compared to the earth, planet X has twice the mass and twice
the radius. This means that compared to the earth’s surface
gravity, the surface gravity on Planet X 1s

A. four times as much.
B. twice as much.
C. the same.

D. half as much.

E. one-quarter as much.

© 2016 Pearson Education, Inc.



Gravitational Forces (1)

My, M Moon ()| My,
I:G =G —— Gravitational
r 2 force exerted on
Moon by Earth

“Attractive Force”

Gravitational force
exerted on Earth
by the Moon




Gravitational attraction

Fg(]0n2) Fg(20nl)

2004 Pearson Education, Inc., publishin

Note Two particles of different mass exert equally
strong gravitational force on each other



Clicker question

The mass of the moon 1s 1/81 of the mass of the earth. Compared
to the gravitational force that the earth exerts on the moon, the
gravitational force that the moon exerts on the earth 1s

A. 812 = 6561 times greater.
B. 81 times greater.

C. equally strong.

D. 1/81 as great.

E. (1/81)?>=1/6561 as great.

© 2016 Pearson Education, Inc.



Why is the Aggie not falling off the earth?

Remember there is equally strong attraction between the earth and the
Aggie and vice versa // RN

Compare the acceleration of the Aggie to the acceleration of the Earth
maomeg

F=aG = mug
0
>9=06—F
TE

Forces are equal between the Aggie and the Earth
F =GIATE
a mE
>4 =—£ ~ 10%3 withmg = 6x10%*kg
ag ma

my, = 60 kg (Aggie’s mass) ap=10"%3g

= Myay = Mgag arg=9g




Newton's Law of Gravitation — Figure 6.12

- Always attractive.

Directly proportional to the masses involved.

Inversely proportional to the square of the separation between
the masses.

m,

Magnitude of force is given by:

C\Irg(Z(ml)
SR %
g r2 Fg(l(mQ)

r

G is gravitational constant: % -

G =6.674x10"" N-m?/kg?

Fg(lonZ) - Fg(Q(ml)

@Pearson Copyright © 2020, 2016, 2012 Pearson Education, Inc. All Rights Reserved



Cavendish balance (1798)

2. Rotation of rod twists

the supporting shaft and
# its attached mirror

I. Masses m; on movable
rod are attracted to
stationary masses 1,

3. A laser beam reflected from the mirror deflects,
showing how much the rod has rotated and hence
how strongly the masses m; and m, attract

Copyright & 2004 Pearson Education, Inc., publishing as Addson Wesley,

Cavendish(1798) announced that he has weighted the earth



Cavendish Tension balance (1798)

Alr current in the room is negligible to the gravitational attraction force

F = G=3 = 1.33x1071°N (Torsion force)
and M =0.5kg;m =0.01 kg and r = 0.05m

When torsion and gravitational forces are in equilibrium;

1.33x10710 = ¢ 22221
0.052 Q N
56 = 6.6x10"11 Y |
kg? Torsion wire
Molecular motors (kinetics); F = 1.33x107 12N - "'@




This May Be Done in a Lab — Cavendish
Experiment (1798)

* The slight attraction of the masses causes a nearly imperceptible

rotation of the string supporting the masses connected to the mirror.
— use this to calculate G.

» Use of the laser allows a point many meters away to move through
measurable distances as the angle allows the initial and final
positions to diverge.

| @ The deflection of the laser beam indicates how far
H» the fiber has twisted. Once the instrument is
@ Gravitation pulls the small masses toward the large calibrated . thistesult sives avalue for G.
masses, causing the vertical quartz fiber to twist. .., ﬂ Mirror i
m Laser beam

The small balls reach a new equilibrium position
when the elastic force exerted by the twisted

quartz fiber balances the gravitational force
between the masses.

Large mass (m,)

Copyright © 2020, 2016, 2012 Pearson Education, Inc. All Rights Reserved



6.4 Weight and Gravitation Acceleration near the surface of the
Earth

* The weight of an object near the surface of
the earth is:

m.m

— — _ 1"""E
mlg —W= F;,eanh surface ~ G R2
E

* With this we find that the acceleration due
to gravity near the earth's surface is:

g= G% = 9.8 m/s” at surface of Earth

E

Courtesy of Wenhao Wu



Even Within the Earth ltself, Gravity
Varies — Figure 6.17

» Distances from the center of rotation and different densities
allow for interesting increase in F.

Solid

—————————

Molten
outer
core

inlner core /

1 I
0 4 8 12 16

Density (X 1000 kg/m?)

@Pearson Copyright © 2020, 2016, 2012 Pearson Education, Inc. All Rights Reserved



Average Density of the Earth

g =9.80m/s?

Rg =6.37 x 10°m

Mg = 5.96 x 1024 kg

- pe=5.50 x 10° kg/m3 : L
=5.50 g/ cms ~2 X PRock g js}}i{(;/:’:?/ | I

[r | L 11 | |
0 1 2 3 4 5 6 Ry
r(x 10°m)

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley



Gravitational Force Falls off Quickly —
Figure 6.15

- The gravitational force is proportional to 1/r¢, and
thus the weight of an object decreases inversely
with the square of the distance from the earth's
center (not distance from the surface of the earth).

Earth, mass mg

S r = Ry = 638 X 10°m @

Astronaut, mass m

w = astronaut’s weight = Gmpm/r?
r = astronaut’s distance from the center of the earth
r — Rg = astronaut’s distance from the surface of the earth

200 -
100 |
| 1 ] 1 | | . X 6
0 5 10 15 20 25 30 r (X% 10%m)

| | _ X 6
0 5 10 15 20 25 ~(r—Rg) X 10°m

Distance above the earth’s surface

© 2016 Pearson Education, Inc.



F=mg
What Is the magnitude of the 1
gravitational force inside, on :i*é:/ -
the surface, and outside the O S,
earth?? e
Earth mass Mg = 6x10%*kg and radius Ry = 6.37x10°m
M
F=G Em = mg
SMg = any
E G
When radius Is variable like r with variable mass m,,¢;4. Of Earth.
Then;
4
Mg-mr3 3
Minsid . E 5 . Mg
F=G milz em and Minside = %n R% o R]fs::
M
“F = G-E5r

E At the center r=0 and F=?




Gravitation Applies Elsewhere — Figure
6.18 Example Mars

« Mars calculate the weight on the surface

- See the worked example on pages 166-167.

T TT ~3~. M=w/g=3.92 x 10* N /9.8 m/s
\\s\ince G is the same everywhere

Earth weight of i
mars /
lander=39,200 N

\
\
\
\
|
I

3.38 x 10° m

|
I

— —_ —_—
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6.5 Satellite Motion
What happens when the velocity increases?

* When v is not large enough, you fall back onto the earth.

* Eventually, F balances and you have an orbit.
* When v is large enough, you achieve escape velocity.

A Projectile launched tangent to the earth’s surface at

= - - - - - sUCCESSIVEly higher speeds
S S=~ S
P \ ~ ~ =%
P g \ N 1\\\:‘\\
» \ X s e
2,7 \ N NS e and @ : Projectile
) VoY ~e é : jectile
N

launched at such high

7 \ XY
1.5 =~ \ :
/,’/ - @ \\\\\\ @ speed that it escapes
25 : -
il i D A5\ from earth
/, 1 Lgs
/ i L (i O
II ;! |
1 1 s s s
1 lE 1 , C | :@1 ........... @: Elliptical orbit
I \ » Ris I
1 s 1 . "
: \ ‘\ R % 4 @vl .............. @: Circular orbit
M E @, & 3 - '
“ \ \\ 7 /T'---, ............... @ : Elliptical orbit
\ \ 2. Vi ]
‘\ S W L
N N P, W /
\ \ e 57 ,/ v,
\ N S U L 7 e,
\ X oo T § // ........... @ and @: Launch
\ o i o
5 » \ \ B R A speed is too slow;
\ ~ o
Parabolic trajectory 9 g ey e projectile fills back
\ e, | owmme i to earth.
~ ”
e ’,’

i "



Satellite Motion: What Happens When
Velocity Rises?

* Eventually, F, balances and you have orbit.
 When v is large enough, you achieve escape velocity.

« An orbit is not fundamentally different from familiar
trajectories on earth. If you launch it slowly, it falls back.
If you launch it fast enough, the earth curves away from
it as it falls, and it goes into orbit.

y A Projectile launched tangent to the h's surface at
f ?—>->->—> succ ely higher speeds
\ o SOEES
P \ \\ \‘\:\ B
o
- Yo X N \\‘-@@ 11111 1@1111
o ONRERN launched at such high
iy ! pRA, @ 1 ed that it e
7’ £ @ R
rl ; A Vil arth
g 3 I
o i Wy
i T
1 :
1 | s 1 "
. § ¢ ; : (8): Elliptical ort
1 i 1 1 (O aneee s elhpt t
s W i 7 ®|
\ ] i s
1 l‘ 3 Ry 4 @,: ............. @Lu | bit
1 \ i @ ]
! A gy . ..{(3) : Elliptical orbit
\ AN
\ /
\ T /, / ,,
\\ N ™ P /.L'"--/
\ % . 7 .
\ 3 & 2 ¢ e @;md @ Launch
~ o - 7 / s
. = \\\ Na, et Bt speed is too slow;
Parabolic trajectory %y e . projectile falls back
s S %7 to earth.
\ 9 -

e R s

© 2016 Pearson Education, Inc.



Circular Satellite Orbit

« If a satellite is in a circular orbit with speed v, the gravitational force
provides the centripetal force needed to keep it moving in a circular

path.

The orbital speed of a satellite The period of a satellite
mmg v? _ 2mr
Grz :F:q: rad:mT U—T
2nr r 2mr3/?
- Vorpit = ik F=——=2nr G - /
r v meg GmE

Courtesy of Wenhao Wu



Circular Satellite Orbit Velocity

 |f a satellite Is Iin a perfect circular orbit with
speed v, the gravitational force provides the
centripetal force needed to keep it moving In a

circular path.

GmsatmE —
2
y g

© 2016 Pearson Education, Inc.




Circular orbit period

G-m.-m  mv’
r r

27rr r Zﬂr%
— =27r =
v Mg Gm,

The larger r then slower the speed
and the larger the period

Circular orbit: acceleration @
perpendicular to velocity v,
hence speed v is constant




Weather Satellite
Example 6.10:

Earth mass Mg = 5.98x10%*kg and radius Ry = 6380km
r = 6380km + 300km = 6.68x10°%km

-FF

a) What is the speed? "/ easok S
2

mv- G Mgm FY\ 6380k
- 2 v = \
T T ' [ ga=? o
ev — /G’ﬂ — 77302 Earth mass=5.9&x11}ﬂkg
r S

b) When is the period?

6
T — Zi’r _ 21(6.68x10°) — 5430
1% 7730

c) What is the radial acceleration?
q _v? _ (7730)?
rad T . 7 668x106

m



Geo-synchronous Satellite (at the equator of Earth)

r ., % Nottoscale

A | 3
a) Height above the surface of Earth.

h=1r—r1g
Earth mass Mg = 6x10%*kg and radius vy = 6380km
2
miv = GMf;nS >v= Z%T and T = 1 day = 86400 sec
mg(2mr)? Mgmg .  GMgT? -
Tz = G 2 - r’ = e 7.54x10“m
1 =4.23x10"m

> h =r —r;=36000 km= 67
b) What is the velocity?

Sv = / “E = 3070
r S



Calculations of Satellite Motion —
Example 6.10 (not Geo-synchronous)

« Work on an example of a relay designed to stay in orbit
permanently.

- See the worked example on page 1609.

-
rad//f‘_ N

J

300 K™ ~~_

/ 6680 km

Y @
me = 598 x 10%* kg :

@Pearson Copyright © 2020, 2016, 2012 Pearson Education, Inc. All Rights Reserved



Satellite motion

An artificial satellite is orbiting the earth (M earth = 5.97E+24 kg and radius = 38E+6 m) in a circular orbit. If

the orbital speed of the satellite is 4000 m/s, what is the radius of the satellite’s orbit (measured from the center
of the earth)?

Solution: Here we use combine two equations given to us. The first is the relationship between linear velocity

and the radius & period of rotation of an object in circular motion:

__ 2mr

T

The second equation is the period of orbit of a satellite:

If we arrange this second equation, we find that we can substitute in the linear velocity:

1

T T2 1 T
- = = - =

2nr  JGM, v GM,
We are given G from the formula sheet (6.67E-11 N*m?2*kg2), and the values of M, (5.97E+24 kg) and v (4000

m/s) in the problem. We can re-arrange the equation to solve for r, and we get:

GM, _ (6.67x10711)(5.97x10%*) 7 _ 7
2 = (2000)2 ~ 2.5x10 r=25x10" m




If an Object Is Massive, Even Photons
Cannot Escape

* A "black hole" is a collapsed sun of iImmense
density such that a tiny radius contains all the
former mass of a star.

* The radius to prevent light from escaping is
termed the "Schwarzschild Radius."

* The edge of this radius has even entered pop
culture in films. This radius for light is called the
"event horizon."

© 2016 Pearson Education, Inc.
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Laser Interferometer Gravitational-

Wave Observatory (LIGO) T e |
operates two gravitational wave observatories in unison: fﬂ::;‘* |
the LIGO Livingston Observatory in H%* 5 : ﬂ{.
, and the LIGO Hanford Observatory, on the | 3
Jlocated near . o : o
These sites are separated by 3,002 kilometers (1,865 miles) gﬁ:f: e = am D
I i lmJ 00k Gt e L]

Strain (10%)

Strain (10%)

Strain (10%)

Collison of two black holes 1.3 billion years ago, each
black hole was about 30 times mass of the Sun, and 3 solar
mass were converted to gravitational waves.

W Photodetector

LIGO Hanford Data

Predicted

LIGO Hanford Data (shifted

R ‘\f‘“’M\JW.\\/ | | A

LIGO Livingston Data

0.35
Time (sec)

0.40



https://en.wikipedia.org/wiki/Livingston,_Louisiana
https://en.wikipedia.org/wiki/Livingston,_Louisiana
https://en.wikipedia.org/wiki/Hanford_Site
https://en.wikipedia.org/wiki/Richland,_Washington

Sun properties

Sun mass Mg = 1.99x103%g and radius R = 6.96x10%m

Average density of Sun;
M M 1.99x1039
p="f= = = 1.41-%
|4 EnR3 5n(6.96x108)3 cm

-2 40% denser than water

Temperature: 5800° K at surface and (1.5x107)°K in the interior of
Sun. (highly ionize plasma gas)

Steven Hawkins Is associated with the department of
Physics and Astronomy at TAMU



Clicker question

A Gravitational wave was created in a collision of
two black holes 1.3 billion years ago, each black
hole was about 30 times mass of the Sun, and 3
solar mass were converted to gravitational waves

A. In this process total energy was conserved
B. In this process the gravitational acceleration was ¢
C. Inthis process also light from the merger reached LIGO



. . . . M
Critical radius for ligt emission R, = 2G —25
C

(Schwarzschild radius)

For R > R, -> light can be emitted
For R < R, - no light can be emitted (Black hole)

To what fraction of sun’s current radius would the sun have to be
compressed to become a black hole?
Mg 2x6.67x10711x1.99x103°

cz (3x108)2
3
Rs _ 2.95x10% _ 42106

R 6.96x108

=295 km

R, = 2G




Example: Problem 7, Exam I, Fall 2016

(a) A satellite of mass 80.0 kg is in a circular orbit around a spherical planet Q of radius 3.00x106 m.
The satellite has a speed 5000 m/s in an orbit of radius 8.00x10% m. What is the mass of the planet Q?

(b) Imagine that you release a small rock from rest at a distance of 20.0 m above the surface of the
planet. What is the speed of the rock just before it reaches the surface?

Given:

e About the satellite (m, = 80.0 kg, r,,;; = 8.00x10° m,

v = 5000 m/s)
e About the planet Q(R,, = 3.00x10° m)

Find:

(a) The mass of the planet Q (M)
(b) Speed of a rock after falling h =20.0 m.

2

Courtesy of Wenhao Wu

mm v
a G—=—=F, =Fpqq =m
( ) Tgrbit g Zrad Srorbit
ForbitV
(b) First, find the gravitational acceleration
9e
near the surface of the planet Q.
_ ~Mgmq _
m
G—2
Rg

Then, apply the kinematic equation

vs =vi + 2goh
to v, find with v, = 0.







A B C

CUBESATS DEPLOY
ICPS deploys 10
CubeSats total -

ARTEMIS |

The First Uncrewed Integrated Flight Test of NASA’s
Orion Spacecraft and Space Launch System Rocket

@ DRO DEPARTURE
Leave DRO and start
return to Earth.

@ LAUNCH (11/16/22)
SLS and Orion lift off
from pad 39B at
Kennedy Space Center.

@ PERIGEE RAISE
MANEUVER

@ INTERIM CRYOGENIC
PROPULSION STAGE
(ICPS) SEPARATION 105.5 miles from
AND DISPOSAL the Moon; targets DRO insertion.

ICPS commits Orion to 13
moon atTLI. ‘ LUNAR ORBIT INSERTION

Enter Distant

Retrograde Orbit.

@ OUTBOUND
POWERED FLYBY

@ EARTH ORBIT
Systems check with solar
panel adjustments.

RETURN POWERED FLYBY

RPF burn prep and return

coast to Earth initiated. Closest
approach in middle of burn, 81 miles.

. JETTISON ROCKET
BOOSTERS, FAIRINGS, AND
LAUNCH ABORT SYSTEM . TRANS LUNAR
INJECTION (TLI) BURN
Maneuver lasts for

approximately 20 minutes.

. OUTBOUND TRAJECTORY
CORRECTION BURNS
As necessary adjust trajectory @ DISTANT RETROGRADE ORBIT @
for lunar flyby to Distant Perform a half revolution
Retrograde Orbit (DRO). (6 day duration) in the orbit 43,730
miles from the surface of the Moon.

RETURN TRANSIT

Return Trajectory Correction
burns as necessary to

aim for Earth’s atmosphere.

@ CORE STAGE MAIN
ENGINE CUT OFF
With separation.

MISSION DURATIONS:
Total: 25 days, 10 hrs
Outbound Transit: 9 days 13 hrs
DRO Stay: 6 days 0 hrs
Return Transit: 9 days 19 hrs

’ CREW MODULE SEPARATION
FROM SERVICE MODULE

@® ENTRY INTERFACE
Enter Earth’s atmosphere.

Q SPLASHDOWN (12/11/22)
Pacific Ocean landing within vi
of the U.S. Navy recovery ship.
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Phys 201, FALL 2023
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