Chapter 6Circular Motion and Gravitation

- To understand the dynamics of circular motion.
- To study the application of circular motion as it applies to Newton's law of gravitation.
- To examine the idea of weight and relate it to mass and Newton's law of gravitation.
- To study the motion of objects in orbit (satellites) as a special application of Newton's law of gravitation.

In Section 3.4

- We studied the kinematics of circular motion.
- Centripetal acceleration
- Changing velocity vector
- Uniform circular motion
- We acquire new terminology.

How many degrees are in one radian?
$\boldsymbol{\theta}=\frac{\boldsymbol{s}}{\boldsymbol{r}} \rightarrow$ ratio of two lengths
(dimensionless)

- Radian
- Period (T)
- Frequency (f)

$$
\begin{aligned}
\frac{S}{r}= & \frac{2 \pi r}{r}=2 \pi r a d \cong 360^{\circ} \\
& 1 \mathrm{rad} \cong \frac{360^{\circ}}{2 \pi}=\frac{360^{\circ}}{6.28}=57^{\circ} \therefore
\end{aligned}
$$

Factors of unity $\frac{1 \mathrm{rad}}{57^{\circ}}$ or $\frac{57^{\circ}}{1 \mathrm{rad}}$

> 1 radian is the angle subtended at the center of a circle by an arc with length equal to the radius.

Velocity Changing from the Influence of $a_{\text {rad }}$ - Figure 6.1

- A review of the relationship between v and $\boldsymbol{a}_{\mathrm{rad}}$.
- The velocity changes direction, not magnitude.
- The magnitude of the centripetal acceleration is:

$$
a_{\mathrm{rad}}=\frac{v^{2}}{R}
$$

- In terms of the speed and period (time to make one complete revolution)

$$
v=\frac{2 \pi R}{T} \Rightarrow a_{\mathrm{rad}}=\frac{4 \pi^{2} R}{T^{2}}
$$

Copyright © 2020, 2016, 2012 Pearson Education, Inc. All Rights Reserved

A wheel with radius 0.5 m is rotating at a constant angular speed of $3 \mathrm{rad} / \mathrm{s}$. What is the linear speed of a point on the rim of the wheel?

Solution: In this question the relationship between angular velocity and linear velocity must be known. From the definition of angular speed, it is the number of radians per second. This is given as:

$$
\omega=\frac{2 \pi}{T}
$$

Where T is the period of rotation (i.e. the amount of time it takes for one full rotation). We see from the formula sheet that the relation for linear velocity has these values in it, giving the relationship \& answer:
$v=\frac{2 \pi R}{T}=\omega R=(3)(0.5)=1.5 \quad v=1.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{rad}=360^{\circ} / 2 \pi=57.3^{\circ}$
$1 \mathrm{rev} / \mathrm{s}=2 \pi \mathrm{rad} / \mathrm{s}$

Circular motion and Gravitation

A Review of Uniform Circular Motion----Section

 3.4Velocity: tangent to the circle with constant magnitude $v_{1}=v_{2}=v$ Acceleration: $\quad a_{\mathrm{rad}}=\frac{v^{2}}{R}$, always pointing toward the center of the circle.

known as the centripetal acceleration

A new concept

Period (T, in s): Time for the object to complete one circle.
New relationships between v, R, and T :
Velocity $\quad v=\frac{2 \pi R}{T}$
Acceleration:

$$
a_{\mathrm{rad}}=\frac{v^{2}}{R}=\frac{4 \pi^{2} R}{T^{2}}
$$

Another new concept
Frequency $\left(f\right.$, in $^{-1}$, or, Hz): revolutions per second.
Relationship between T and f :

$$
f=1 / T
$$

(a) A point moves a distance Δs at constant speed along a circular path.

(b) The corresponding change in velocity

(c) The acceleration in uniform circular motic always points toward the center of the circle.

6.1 Force in Circular Motion

Question: How can an object of mass m maintain its centripetal acceleration?

Answer: A centripetal force (pointing to the center of the circle) must act on the object to maintain the centripetal accelertion.

The magnitude of the net centripetal force:

$$
F_{\mathrm{net}}=F_{\mathrm{rad}}=m \frac{v^{2}}{R}
$$

Note: $m \frac{v^{2}}{R}$ itself is not a force. It is equal to $F_{\text {rad }}$.

Example 6.1 Model Airplane on a String

Given: mass $m=0.500 \mathrm{~kg}$ radius $R=5.00 \mathrm{~m}$ period $T=4.00 \mathrm{~s}$.

Find: Tension force in the string, F_{T}.

$$
\begin{aligned}
& \sum F_{x}=m a_{r a d} \\
& F_{T}=m \frac{v^{2}}{R} \\
& \sum F_{y}=0 \\
& \quad F_{l i f t}+(-m g)=0
\end{aligned}
$$

with

$$
v=\frac{2 \pi R}{T}
$$

The plane flies horizontally, so the vector sum of lift and weight is zero.

(b) Free-body diagram
with the horizontal x-axis pointing toward the center of the circle and the y-axis pointing up vertically

A Tether Ball Problem - Example 6.2

- Refer to the worked example on page 156.

(a) The situation

(b) The forces on the ball

(c) Free-body diagram of the ball

$$
\begin{aligned}
& v=\frac{2 \pi R}{T} \\
& R=L \sin \beta
\end{aligned} \quad\left\{\begin{array}{lc}
\sum F_{x}=m a_{\mathrm{rad}}, & F_{T} \sin \beta=m \frac{v^{2}}{R}=m \frac{4 \pi^{2}}{T^{2}} \\
\sum F_{y}=0, & F_{T} \cos \beta+(-m g)=0
\end{array}\right.
$$

Conical Pendulum Tether Ball

 Problem - Example 6.2
Center-seeking Force: Tension

Example 6.2 A Tether Ball Problem

Given: mass m, length of string L period T
Find: \quad Tension in the string, F_{T}. Angle with vertical, β

$$
\begin{array}{ll}
\sum F_{x}=m a_{r a d}, & F_{T} \sin \beta=m \frac{v^{2}}{R}=m \frac{4 \pi^{2}}{T^{2}} \\
\sum F_{y}=0, & F_{T} \cos \beta+(-m g)=0 \\
\text { with } & v=\frac{2 \pi R}{T} \\
\text { and } & R=L \sin \beta
\end{array}
$$

$F_{T} \sin \beta=m \frac{v^{2}}{R}=m \frac{4 \pi^{2} R}{T^{2}}=m \frac{4 \pi^{2} L \sin \beta}{T^{2}}$

$$
F_{T}=m \frac{4 \pi^{2} L}{T^{2}} \quad \text { and } \quad \cos \beta=\frac{g T^{2}}{4 \pi^{2} L}
$$

What is the period of this conical pendulum?

$$
a_{r}=\frac{v^{2}}{R}, R=L \sin \theta \text { and } T=\frac{2 \pi R}{v}
$$

So; $a_{r}=\left(\frac{2 \pi R}{T}\right)^{2} \frac{1}{R}=\frac{4 \pi^{2} R}{T^{2}}$

$$
\sum F_{y}=m a_{y}=F \cos \theta-m g=0
$$

$$
\rightarrow F \cos \theta=m g \rightarrow F=\frac{m g}{\cos \theta}
$$

$$
\sum F_{x}=m a_{x}=m a_{r}=F \sin \theta=\frac{m v^{2}}{R}=\frac{m g \sin \theta}{\cos \theta}
$$

$$
\therefore a_{r}=g \tan \theta
$$

So; $a_{r}=\frac{g \sin \theta}{\cos \theta}=\frac{4 \pi^{2} R}{T^{2}} \rightarrow \tan \theta=\frac{4 \pi^{2} R}{T^{2} g}=\frac{4 \pi^{2} L \sin \theta}{T^{2} g}$
$\therefore T=2 \pi \sqrt{\frac{L \cos \theta}{g}}$ (the period is independent of mass)

All information is in the equations in red

From a Brazos county fair

The "Giant Swing":

a) Make a free body diagram of the seat including the person on it.
b) Find the time for one revolution for the indicated angle of 30°
c) Does the angle depend on the weight of the passenger?

Copyight © 2007 Pearson Education, Inc. publishing as Addison Wesley
a) The person moves on a radius of $\mathbf{R}=\mathbf{3}+\mathbf{5} \sin \mathbf{3 0}=\mathbf{5 . 5 m}$

$$
a_{r}=\frac{v^{2}}{R} \text { and } T=\frac{2 \pi R}{v}
$$

b) $\sum F_{y}=m a_{y} \rightarrow F \cos 30=m g \rightarrow F=\frac{m g}{\cos 30}$

$$
\begin{aligned}
& \sum F_{x}=m a_{x} \rightarrow F \sin 30=\frac{m v^{2}}{R}=\frac{m g \sin 30}{\cos 30} \\
& v=\sqrt{R g \tan 30}=\sqrt{5.5 * 9.8 * \tan 30}=5.58 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& T=\frac{2 \pi 5.5}{5.58}=6.19 \mathrm{~s}
\end{aligned}
$$

c) The net force is proportional to mass that divides out in $\vec{F}=m \vec{a}$. The angle is independent of mass.

Example 6.3

Rounding a Flat Curve, page 157
Given: radius $R=250 \mathrm{~m}$

$$
\mu_{\mathrm{s}}=0.90
$$

Find:
$v_{\text {max }}$

Solution:

The source of centripetal force is static friction force provided by the tires.

$$
\left.\begin{array}{ll}
\sum F_{x}=m a_{\mathrm{rad}}, & f_{s}=m \frac{v^{2}}{R} \\
\sum F_{y}=0, & n+(-m g)=0
\end{array}\right\} \quad \begin{gathered}
\text { with } f_{s, \max }=\mu_{s} n=\mu_{s}(m g) \\
\Rightarrow \quad v_{\max }=\sqrt{\mu_{s} g R}
\end{gathered}
$$

Equalize the maximum friction force to the force required by circular motion (m / R) $\mathrm{v}_{\max }{ }^{2}$

Given: $\quad r=50 \mathrm{~m}, \mathrm{~m}=1000 \mathrm{~kg}, v=14 \frac{\mathrm{~m}}{\mathrm{~s}}$ and $\mu_{s}=0.6$
Friction force is larger than radial force

$$
F_{f r}>F_{r}(\text { no skidding })
$$

Friction force is smaller than radial force

$$
\begin{gathered}
F_{f r}<F_{r}(\text { skidding }) \\
F_{N}=\left|-F_{G}\right|=m g=1000 * 9.8=9800 \mathrm{~N} \\
F_{f r}=\mu_{s} F_{N}=0.6 * 9800=5900 \mathrm{~N} \\
F_{r}=m a_{r}=\mathrm{m} \frac{v^{2}}{r}=1000 * \frac{14^{2}}{50}=3900 \mathrm{~N}
\end{gathered}
$$

So, no skidding at $\mu_{s}=0.6$
By changing friction to $\mu_{S}=0.25$
$F_{f r}=\mu_{s} F_{N}=0.25 * 9800=2500 N<F_{r} \quad$ (Skidding)
The maximum safe velocity

$$
\begin{gathered}
\sum F_{y}=m a_{y}=F_{N}=m g=0 \rightarrow F_{N}=m g \\
\sum F_{x}=m a_{x}=m a_{r}=\mathrm{m} \frac{v^{2}}{r} \\
F_{f r, \max }=\mu_{s} F_{N}=\mu_{s} m g=m \frac{v_{\max }^{2}}{r} \\
\therefore v_{\max }^{\text {safe }}=\sqrt{\mu_{s} g r}
\end{gathered}
$$

6-52. As the bus rounds a flat curve at constant speed, a package suspended from the luggage rack on a string makes an angle with the vertical as shown.

What is the velocity of the bus?
What is the radial acceleration?

What is the radius of the curve?

$$
\sum F_{y}=m a_{y}=0 \rightarrow T \cos 30-m g=0
$$

$$
\therefore T=\frac{m g}{\cos 30}
$$

$\sum F_{x}=m a_{x} \rightarrow T \sin 30=\mathrm{m} \frac{v^{2}}{r}$
$\therefore v=\sqrt{\frac{r T \sin 30}{m}}=\sqrt{\frac{m g}{\cos 30} * \frac{r \sin 30}{m}}=\sqrt{g r \tan 30}$
$\rightarrow v=\sqrt{9.8 * 50 * \tan 30}=16.8 \frac{\mathrm{~m}}{\mathrm{~s}}$

Example 6.4 Rounding a Banked Curve, page 158

No need to rely on friction. The horizontal component of the normal force is the source of the centripetal force.

Given: radius $R=250 \mathrm{~m}$ Design: $v_{\max }=25 \mathrm{~m} / \mathrm{s}$

Find: $\quad \beta$

$$
\begin{aligned}
& \sum F_{x}=m a_{r a d}, \quad n \sin \beta=m \frac{v^{2}}{R} \\
& \sum F_{y}=0, \quad n \cos \beta+(-m g)=0
\end{aligned} \longrightarrow \begin{aligned}
& n \sin \beta=m \frac{v^{2}}{R} \\
& n \cos \beta=m g
\end{aligned} \longrightarrow \tan \beta=\frac{v^{2}}{g R}
$$

Rounding a Banked Curve - Example 6.4

- The centripetal force comes only from a component of normal force

No Skidding on Banked Curve

No Skidding on Banked Curve

The key to this problem is to realize that the net force $F_{\text {net }}$ causes the car to move along the curve.

$$
\begin{aligned}
& F_{N} \sin \theta+f_{r} \cos \theta=F_{n e t} \\
& F_{N} \cos \theta-F_{g}-f_{r} \sin \theta=0 \therefore F_{g}=m g \text { and } f_{r}=\mu_{S} F_{N} \\
& F_{n e t}=F_{r a d}=m a_{r a d}=\mathrm{m} \frac{v^{2}}{r}
\end{aligned}
$$

Use;

$$
\begin{gather*}
\sum F_{y}=m a_{y}=0 \\
\sum F_{x}=m a_{x}=m a_{r a d}=\mathrm{m} \frac{v^{2}}{r} \\
F_{N} \sin \theta+\mu_{s} F_{N} \cos \theta=F_{n e t}=\mathrm{m} \frac{v^{2}}{r}=F_{N}\left(\sin \theta+\mu_{s} \cos \theta\right) \ldots \ldots . . \tag{1}\\
F_{N} \cos \theta-\mu_{s} F_{N} \sin \theta=F_{g}=m g=F_{N}\left(\cos \theta-\mu_{s} \sin \theta\right) \ldots \ldots \ldots \tag{2}
\end{gather*}
$$

Divide equation (1) by equation (2);

$$
\begin{aligned}
& \frac{\left(\sin \theta+\mu_{s} \cos \theta\right)}{\left(\cos \theta-\mu_{s} \sin \theta\right)}=\frac{v^{2}}{g r} \\
& v=\sqrt{g r \frac{\left(\sin \theta+\mu_{s} \cos \theta\right)}{\left(\cos \theta-\mu_{s} \sin \theta\right)}}
\end{aligned}
$$

Note:

For special case $\mu_{s}=0$;

$$
v_{\text {design }}=\sqrt{g r \tan \theta} \text { and } \tan \theta=\frac{v^{2}}{g r}
$$

For special case $\theta=0^{\circ}$;

$$
\therefore v_{\text {design }}=\sqrt{\mu_{s} g r} \quad \text { (unbanked curve) }
$$

6-51: When the system rotates about the rod the strings are extended as

 shown. (The tension in the upper string T_{H} is 80 N)
a) The block moves in a circle of radius

$$
r=\sqrt{(1.25 m)^{2}-(1.00 m)^{2}}=0.75 m
$$

Each string makes an angle θ with the vertical pole

$$
\cos \theta=\frac{1.00}{1.25} \rightarrow \theta=36.9^{\circ}
$$

This block has an acceleration of $a_{r}=\frac{v^{2}}{r}$
b) What is the tension in the lower string?

$$
\begin{aligned}
& \quad \sum F_{y}=m a_{y}=0 \rightarrow T_{H} \cos \theta-T_{L} \cos \theta-m g=0 \\
& \therefore T_{L}=T_{H}-\frac{m g}{\cos \theta}=80 \mathrm{~N}-\frac{4.00 \mathrm{~kg} * 9.8 \frac{\mathrm{~m}}{s^{2}}}{\cos 36.9}=31 \mathrm{~N}
\end{aligned}
$$

x c) What is the speed of the block?

$$
\begin{aligned}
& \sum F_{x}=m a_{x} \rightarrow\left(T_{H}+T_{L}\right) \sin \theta=\mathrm{m} \frac{v^{2}}{r} \\
& \therefore v=\sqrt{\frac{r\left(T_{H}+T_{L}\right) \sin \theta}{m}}=\sqrt{\frac{0.75(80+31) \sin 36.9}{4}}=3.53 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

6.2	Motion in a Vertical
Circle	

Example $6.5 \quad$ Dynamics of a Ferris wheel at a constant speed, page 158
Given: $\quad m=60.0 \mathrm{~kg}$

$$
R=8.00 \mathrm{~m}
$$

$$
T=10.0 \mathrm{~s} \quad(\mathrm{v}=2 \pi R / T)
$$

Find the normal force:
(a) at the top $\left(n_{\mathrm{T}}\right)$
(b) at the bottom (n_{B})
(a) At the top

$$
n_{T}-m g=m a_{T}=m\left(-\frac{v^{2}}{R}\right) \quad n_{T}=m g-m \frac{v^{2}}{R}=m\left(g-\frac{v^{2}}{R}\right)
$$

(b) At the bottom

$$
n_{B}-m g=m a_{B}=m\left(\frac{v^{2}}{R}\right) \quad n_{T}=m g+m \frac{v^{2}}{R}=m\left(g+\frac{v^{2}}{R}\right)
$$

at the bottom

Work out the radial acceleration of the moon around the earth.

$$
\begin{gathered}
a_{r}=\frac{v^{2}}{R} \text { and } v=\frac{2 \pi R}{T} \quad \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
T=27.3 d * \frac{24 h}{1 d} * \frac{3600 \mathrm{~s}}{1 h}=2.36 \times 10^{6} \mathrm{~s} \text { and } R=3.84 \times 10^{8} \mathrm{~m}
\end{gathered}
$$

So; $v=10.22 * 10^{2} \frac{m}{s} \quad a_{r}=27.2 * 10^{-4} \mathrm{~m} / \mathrm{s}^{2} \approx 3 * 10^{-4} \frac{\mathrm{~m}}{s^{\wedge} 2} \mathrm{~g}$

Ferris wheel

Ferris wheel

Top:

$$
a_{r}=\frac{v^{2}}{R} \text { and } T=\frac{2 \pi R}{v}
$$

$$
\begin{gathered}
\sum F_{y}=m a_{y}=F_{N}-m g=-\frac{m v^{2}}{R} \\
\rightarrow F_{N}=m\left(g-\frac{v^{2}}{R}\right)
\end{gathered}
$$

The force which the seat applies to the passenger is smaller than his weight.

For, $\frac{v^{2}}{R}=g$ passenger is starting to fly off.

Model Airplane on a String - Example 6.1

- How hard must you pull on the string to keep the airplane flying in a circle?
- $\mathrm{T}=4 \mathrm{~s} \mathrm{~m}=0.5 \mathrm{~kg}$

$$
=\frac{2 R}{T}\left\{\begin{array}{ll}
F_{x}=m a_{\mathrm{rad}}, & F_{T}=m \frac{2}{R} \\
F_{y}=0, & F_{\text {lift }}+(\mathrm{mg})=0
\end{array} \quad \mathrm{v}^{2}=(\mathrm{TR} / \mathrm{m})^{2}\right.
$$

snowboarding

The net force F always down, but $\mathrm{a}=0$ in A . $\mathrm{a}=$ positive in $\mathrm{B}, \mathrm{a}=$ negative in C
C. Just like elevator accelerating down

$$
F-m g=m(-a) \quad F=m(g-a)
$$

Clicker question

You're snowboarding down a slope. The free-body diagram in the figure represents the forces on you as you
a) go over the top of a mogul.
b) go through the bottom of a hollow between moguls.
c) go along a horizontal stretch.
d) go along a horizontal stretch or over the top of a mogul.

Clicker question

You whirl a ball of mass m in a fast vertical circle on a string of length R. At the bottom of the circle, the tension in the string is five times the ball's weight. The ball's speed at this point is given by
a) $\sqrt{g R}$
b) $\sqrt{4 g R}$
c) $\sqrt{6 g R}$
d) $6 \sqrt{g R}$

$$
\mathrm{F}_{\mathrm{T}}=5 \mathrm{mg}=\mathrm{mg}+(\mathrm{m} / \mathrm{R}) \mathrm{v}^{2}
$$

Clicker question

You whirl a ball of mass m in a fast vertical circle on a string of length R. At the top of the circle, the tension in the string is five times the ball's weight. The ball's speed at this point is given by
a) $\sqrt{g R}$
b) $\sqrt{4 g R}$
c) $\sqrt{6 g R}$
d) $6 \sqrt{g R}$

$$
F_{T}=5 m g=-m g+(m / R) v^{2}
$$

```
6.3 Newton's Law of
Gravitation
```


Properties of Gravitation Forces

- Always attractive.
- Directly proportional to both the masses involved.
- Inversely proportional to the square of the center-tocenter distance between the two masses.
- Magnitude of force is given by:

$$
F_{\mathrm{g}}=G \frac{m_{1} m_{2}}{r^{2}}
$$

- G is the gravitational constant:

$$
G=6.674 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

Gravitation

Newton's Law of Gravitation

$$
F_{g}=\frac{G m_{1} m_{2}}{r^{2}}
$$

$\mathrm{G}=$ gravitational constant $=6.673(10) \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Note: The weight ω of a body of mass m on the earth's surface with radius R_{E} is

$$
\omega=m g=\frac{G m_{E} \cdot m}{R_{E}^{2}} \quad \text { or } \quad g=\frac{G m_{E}}{R_{E}^{2}}
$$

Clicker question

Compared to the earth, planet X has twice the mass and twice the radius. This means that compared to the earth's surface gravity, the surface gravity on Planet X is
A. four times as much.
B. twice as much.
C. the same.
D. half as much.
E. one-quarter as much.

Gravitational Forces (I)

Gravitational attraction

Note: Two particles of different mass exert equally strong gravitational force on each other

Clicker question

The mass of the moon is $1 / 81$ of the mass of the earth. Compared to the gravitational force that the earth exerts on the moon, the gravitational force that the moon exerts on the earth is
A. $81^{2}=6561$ times greater.
B. 81 times greater.
C. equally strong.
D. $1 / 81$ as great.
E. $(1 / 81)^{2}=1 / 6561$ as great.

Why is the Aggie not falling off the earth?

Remember there is equally strong attraction between the earth and the Aggie and vice versa

Compare the acceleration of the Aggie to the acceleration of the Earth

$$
\begin{aligned}
& F=G \frac{m_{A} m_{E}}{r_{E}^{2}}=m_{A} g \\
& \rightarrow g=G \frac{m_{E}}{r_{E}^{2}}
\end{aligned}
$$

Forces are equal between the Aggie and the Earth

$$
\begin{aligned}
& F=G \frac{m_{A} m_{E}}{r_{E}^{2}}=m_{A} a_{A}=m_{E} a_{E} \quad a_{E}=\mathrm{g} \\
& \rightarrow \frac{a_{A}}{a_{E}}=\frac{m_{E}}{m_{A}} \approx 10^{23} \text { with } m_{E}=6 \times 10^{24} \mathrm{~kg} \\
& m_{A}=60 \mathrm{~kg} \text { (Aggie's mass) } \quad a_{E}=10^{-23} \mathrm{~g}
\end{aligned}
$$

Newton's Law of Gravitation - Figure 6.12

- Always attractive.
- Directly proportional to the masses involved.
- Inversely proportional to the square of the separation between the masses.
- Magnitude of force is given by:

$$
F_{g}=G \frac{m_{1} m_{2}}{r^{2}}
$$

- G is gravitational constant:

$$
G=6.674 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

$$
F_{\mathrm{g}(1 \text { on } 2)}=F_{\mathrm{g}(2 \text { on } 1)}
$$

Cavendish balance (1798)

Cavendish Tension balance (1798)

Air current in the room is negligible to the gravitational attraction force

$$
\begin{aligned}
& \quad F=G \frac{M m}{r^{2}}=1.33 \times 10^{-10} \mathrm{~N} \text { (Torsion force) } \\
& \text { and } M=0.5 \mathrm{~kg} ; m=0.01 \mathrm{~kg} \text { and } r=0.05 \mathrm{~m}
\end{aligned}
$$

When torsion and gravitational forces are in equilibrium;

$$
\begin{aligned}
& 1.33 \times 10^{-10}=G \frac{0.5 * 0.01}{0.05^{2}} \\
& \rightarrow G=6.6 \times 10^{-11} \frac{m^{2} N}{k g^{2}}
\end{aligned}
$$

Molecular motors (kinetics); $\mathrm{F}=1.33 \times 10^{-12} \mathrm{~N}$

This May Be Done in a Lab - Cavendish Experiment (1798)

- The slight attraction of the masses causes a nearly imperceptible rotation of the string supporting the masses connected to the mirror. \rightarrow use this to calculate G.
- Use of the laser allows a point many meters away to move through measurable distances as the angle allows the initial and final positions to diverge.

Pearson

6.4 Weight and Gravitation Acceleration near the surface of the
 Earth

- The weight of an object near the surface of the earth is:

$$
m_{1} g=w=F_{\mathrm{g}, \text { earth surface }}=G \frac{m_{1} m_{\mathrm{E}}}{R_{\mathrm{E}}^{2}}
$$

- With this we find that the acceleration due to gravity near the earth's surface is:

$$
g=G \frac{m_{\mathrm{E}}}{R_{\mathrm{E}}^{2}}=9.8 \mathrm{~m} / \mathrm{s}^{2} \text { at surface of Earth }
$$

Even Within the Earth Itself, Gravity Varies - Figure 6.17

- Distances from the center of rotation and different densities allow for interesting increase in F_{g}.

Average Density of the Earth

$g=9.80 \mathrm{~m} / \mathrm{s}^{2}$

$R_{E}=6.37 \times 10^{6} \mathrm{~m}$
$M_{E}=5.96 \times 10^{24} \mathrm{~kg}$
$\rightarrow \rho_{E}=5.50 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
$=5.50 \mathrm{~g} / \mathrm{cm}^{3} \sim 2 \times \rho_{\text {Rock }}$

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

Gravitational Force Falls off Quickly Figure 6.15

- The gravitational force is proportional to $1 / r^{2}$, and thus the weight of an object decreases inversely with the square of the distance from the earth's center (not distance from the surface of the earth).

What is the magnitude of the gravitational force inside, on the surface, and outside the earth??

Earth mass $M_{E}=6 \times 10^{24} \mathrm{~kg}$ and radius $R_{E}=6.37 \times 10^{6} \mathrm{~m}$

$$
\begin{aligned}
& F=G \frac{M_{E} m}{R_{E}^{2}}=m g \\
& \rightarrow M_{E}=\frac{g R_{E}^{2}}{G}
\end{aligned}
$$

When radius is variable like r with variable mass $m_{\text {inside }}$ of Earth.

Then;

$$
\begin{gathered}
F=G \frac{m_{\text {inside }} m}{r^{2}} \text { and } m_{\text {inside }}=\frac{M_{E} \frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi R_{E}^{3}}=\frac{M_{E} r^{3}}{R_{E}^{3}} \\
\therefore F=G \frac{M_{E} m}{R_{E}^{3}} r \quad \text { At the center } \mathrm{r}=0 \text { and } \mathrm{F}=?
\end{gathered}
$$

Gravitation Applies Elsewhere - Figure 6.18
 Example Mars

- Mars calculate the weight on the surface
- See the worked example on pages 166-167.

Earth weight of mars lander $=39,200 \mathrm{~N}$

6.5	Satellite Motion
	What happens when the velocity increases?

- When v is not large enough, you fall back onto the earth.
- Eventually, F_{g} balances and you have an orbit.
- When v is large enough, you achieve escape velocity.

Satellite Motion: What Happens When Velocity Rises?

- Eventually, F_{g} balances and you have orbit.
- When v is large enough, you achieve escape velocity.
- An orbit is not fundamentally different from familiar trajectories on earth. If you launch it slowly, it falls back. If you launch it fast enough, the earth curves away from it as it falls, and it goes into orbit.

Circular Satellite Orbit

- If a satellite is in a circular orbit with speed $v_{\text {orbit }}$, the gravitational force provides the centripetal force needed to keep it moving in a circular path.

The orbital speed of a satellite

$$
G \frac{m m_{E}}{r^{2}}=F_{g}=F_{r a d}=m \frac{v^{2}}{r}
$$

$$
\rightarrow \quad v_{\text {orbit }}=\sqrt{\frac{G m_{E}}{r}}
$$

The period of a satellite

$$
\begin{gathered}
v=\frac{2 \pi r}{T} \\
T=\frac{2 \pi r}{v}=2 \pi r \sqrt{\frac{r}{G m_{E}}}=\frac{2 \pi r^{3 / 2}}{\sqrt{G m_{E}}}
\end{gathered}
$$

Circular Satellite Orbit Velocity

- If a satellite is in a perfect circular orbit with speed $v_{\text {orbit }}$, the gravitational force provides the centripetal force needed to keep it moving in a circular path.

$$
\frac{G m_{\mathrm{sat}} m_{\mathrm{E}}}{r^{2}}=F_{\mathrm{g}}=F_{\mathrm{rad}}=m \frac{v^{2}}{R} \quad \Rightarrow \quad v_{\text {orbit }}=\sqrt{\frac{G m_{\mathrm{E}}}{r}}
$$

Circular orbit period

Weather Satellite

Example 6.10:

Earth mass $M_{E}=5.98 \times 10^{24} \mathrm{~kg}$ and radius $R_{E}=6380 \mathrm{~km}$

$$
r=6380 \mathrm{~km}+300 \mathrm{~km}=6.68 \times 10^{6} \mathrm{~km}
$$

a) What is the speed?

$$
\begin{aligned}
\frac{m v^{2}}{r} & =G \frac{M_{E} m}{r^{2}} \\
\rightarrow v & =\sqrt{G \frac{M_{E}}{r}}=7730 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \text { Earth mass }=5.98 \times 10^{24} \mathrm{~kg}
\end{aligned}
$$

b) When is the period?

$$
T=\frac{2 \pi r}{v}=\frac{2 \pi\left(6.68 \times 10^{6}\right)}{7730}=5430 s
$$

c) What is the radial acceleration?

$$
a_{r a d}=\frac{v^{2}}{r}=\frac{(7730)^{2}}{6.68 \times 10^{6}}=8.95 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Geo-synchronous Satellite (at the equator of Earth)

Not to scale
a) Height above the surface of Earth.

$$
h=r-r_{E}
$$

Earth mass $M_{E}=6 \times 10^{24} \mathrm{~kg}$ and radius $r_{E}=6380 \mathrm{~km}$

$$
\begin{aligned}
\frac{m_{s} v^{2}}{r}= & G \frac{M_{E} m_{s}}{r^{2}} \rightarrow v=\frac{2 \pi r}{T} \text { and } T=1 \text { day }=86400 \mathrm{sec} \\
& \frac{m_{s}(2 \pi r)^{2}}{r T^{2}}=G \frac{M_{E} m_{s}}{r^{2}} \rightarrow r^{3}=\frac{G M_{E} T^{2}}{4 \pi^{2}}=7.54 \times 10^{22} \mathrm{~m}^{3} \\
& \therefore r=4.23 \times 10^{7} \mathrm{~m} \\
& \rightarrow h=r-r_{E}=36000 \mathrm{~km} \approx 6 r_{E}
\end{aligned}
$$

b) What is the velocity?

$$
\rightarrow v=\sqrt{G \frac{M_{E}}{r}}=3070 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Calculations of Satellite Motion Example 6.10 (not Geo-synchronous)

- Work on an example of a relay designed to stay in orbit permanently.
- See the worked example on page 169.

Satellite motion

- An artificial satellite is orbiting the earth (M earth $=5.97 \mathrm{E}+24 \mathrm{~kg}$ and radius $=38 \mathrm{E}+6 \mathrm{~m}$) in a circular orbit. If the orbital speed of the satellite is $4000 \mathrm{~m} / \mathrm{s}$, what is the radius of the satellite's orbit (measured from the center of the earth)?
- Solution: Here we use combine two equations given to us. The first is the relationship between linear velocity and the radius \& period of rotation of an object in circular motion:
- $v=\frac{2 \pi r}{T}$
- The second equation is the period of orbit of a satellite:
- $T=\frac{2 \pi r^{3} / 2}{\sqrt{G M_{e}}}$
- If we arrange this second equation, we find that we can substitute in the linear velocity:
- $\frac{T}{2 \pi r}=\frac{r^{\frac{1}{2}}}{\sqrt{G M_{e}}} \Rightarrow \frac{1}{v}=\sqrt{\frac{r}{G M_{e}}}$
- We are given G from the formula sheet $\left(6.67 E-11 N^{*} m^{2} * \mathrm{~kg}^{-2}\right)$, and the values of $M_{e}(5.97 E+24 \mathrm{~kg})$ and $v(4000$ m / s) in the problem. We can re-arrange the equation to solve for r, and we get:
- $\frac{G M_{e}}{v^{2}}=\frac{\left(6.67 \times 10^{-11}\right)\left(5.97 \times 10^{24}\right)}{(4000)^{2}} \approx 2.5 \times 10^{7} \quad \mathrm{r}=2.5 \times 10^{7} \quad \mathrm{~m}$

If an Object is Massive, Even Photons Cannot Escape

- A "black hole" is a collapsed sun of immense density such that a tiny radius contains all the former mass of a star.
- The radius to prevent light from escaping is termed the "Schwarzschild Radius."
- The edge of this radius has even entered pop culture in films. This radius for light is called the "event horizon."

Hawking @ @ranch

Laser Interferometer GravitationalWave Observatory (LIGO)

operates two gravitational wave observatories in unison: the LIGO Livingston Observatory in Livingston, Louisiana, and the LIGO Hanford Observatory, on the DOE Hanford Site ,located near Richland, Washington. These sites are separated by 3,002 kilometers (1,865 miles)

Collison of two black holes 1.3 billion years ago, each black hole was about 30 times mass of the Sun, and 3 solar mass were converted to gravitational waves.

Sun properties

Sun mass $M_{S}=1.99 \times 10^{30} \mathrm{~kg}$ and radius $R=6.96 \times 10^{8} \mathrm{~m}$ Average density of Sun;

$$
\rho=\frac{M_{s}}{V}=\frac{M_{S}}{\frac{4}{3} \pi R^{3}}=\frac{1.99 \times 10^{30}}{\frac{4}{3} \pi\left(6.96 \times 10^{8}\right)^{3}}=1.41 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

$\rightarrow 40 \%$ denser than water
Temperature: $5800^{\circ} \mathrm{K}$ at surface and $\left(1.5 \times 10^{7}\right)^{\circ} \mathrm{K}$ in the interior of Sun. (highly ionize plasma gas)

Steven Hawkins is associated with the department of Physics and Astronomy at TAMU

Clicker question

A Gravitational wave was created in a collision of two black holes 1.3 billion years ago, each black hole was about 30 times mass of the Sun, and 3 solar mass were converted to gravitational waves
A. In this process total energy was conserved
B. In this process the gravitational acceleration was g
C. In this process also light from the merger reached LIGO

Critical radius for ligt emission $R_{S}=2 G \frac{M_{S}}{c^{2}}$ (Schwarzschild radius)

For $R>R_{s} \rightarrow$ light can be emitted For $R<R_{S} \rightarrow$ no light can be emitted (Black hole)

To what fraction of sun's current radius would the sun have to be compressed to become a black hole?

$$
\begin{aligned}
& R_{S}=2 G \frac{M_{s}}{c^{2}}=\frac{2 \times 6.67 \times 10^{-11} \times 1.99 \times 10^{30}}{\left(3 \times 10^{8}\right)^{2}}=2.95 \mathrm{~km} \\
& \quad \rightarrow \frac{R_{s}}{R}=\frac{2.95 \times 10^{3}}{6.96 \times 10^{8}}=4.2 \times 10^{-6}
\end{aligned}
$$

Example: Problem 7, Exam II, Fall 2016

(a) A satellite of mass 80.0 kg is in a circular orbit around a spherical planet Q of radius $3.00 \times 10^{6} \mathrm{~m}$. The satellite has a speed $5000 \mathrm{~m} / \mathrm{s}$ in an orbit of radius $8.00 \times 10^{6} \mathrm{~m}$. What is the mass of the planet Q ?
(b) Imagine that you release a small rock from rest at a distance of 20.0 m above the surface of the planet. What is the speed of the rock just before it reaches the surface?

Given:

- About the satellite $\left(m_{\mathrm{s}}=80.0 \mathrm{~kg}, r_{\text {orbit }}=8.00 \times 10^{6} \mathrm{~m}\right.$, $v=5000 \mathrm{~m} / \mathrm{s}$)
- About the planet $\mathrm{Q}\left(R_{\mathrm{Q}}=3.00 \times 10^{6} \mathrm{~m}\right)$

Find: \quad (a) The mass of the planet $\mathrm{Q}\left(m_{\mathrm{Q}}\right)$
(b) Speed of a rock after falling $h=20.0 \mathrm{~m}$.

(a)

$$
\begin{aligned}
G \frac{m_{\mathrm{s}}^{2} m_{Q}}{r_{\text {orbit }}} & =F_{g}=F_{r a d}=m_{\mathrm{s}} \frac{v^{2}}{r_{\text {orbit }}} \\
m_{Q} & =\frac{r_{\text {orbit }} v^{2}}{G}
\end{aligned}
$$

(b) First, find the gravitational acceleration g_{Q}
near the surface of the planet Q .
$m_{\mathrm{s}} g_{Q}=G \frac{m_{\mathrm{s}} m_{Q}}{R_{Q}^{2}} \quad g_{Q}=$ $G \frac{m_{Q}}{R_{Q}^{2}}$

Then, apply the kinematic equation

$$
v_{2}^{2}=v_{1}^{2}+2 g_{Q} h
$$

to v_{2} find with $v_{1}=0$.

