
● To understand the dynamics of circular motion.

● To study the application of circular motion as it applies to Newton's law of 

   gravitation.

● To examine the idea of weight and relate it to mass and Newton's law of 

   gravitation.

● To study the motion of objects in orbit (satellites) as a special application of 

   Newton's law of gravitation.

Chapter 6 Circular Motion and Gravitation

Courtesy of Wenhao Wu
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In Section 3.4

• We studied the kinematics of circular motion.

– Centripetal acceleration

– Changing velocity vector

– Uniform circular motion

• We acquire new terminology.

– Radian

– Period (T)

– Frequency (f)

How many degrees are in one radian ? 

 𝜽 =
𝑺

𝒓
 → ratio of two lengths 

(dimensionless)
𝑺

𝒓
=

𝟐𝝅𝒓

𝒓
= 𝟐𝝅 𝒓𝒂𝒅 ≅ 𝟑𝟔𝟎°

 𝟏 𝒓𝒂𝒅 ≅
𝟑𝟔𝟎°

𝟐𝝅
=

𝟑𝟔𝟎°

𝟔.𝟐𝟖
= 𝟓𝟕°  ∴ 

Factors of unity 
𝟏 𝒓𝒂𝒅

𝟓𝟕°
 or 

𝟓𝟕°

𝟏 𝒓𝒂𝒅

1 radian is the angle subtended at the 

center of a circle by an arc with length 

equal to the radius.
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Velocity Changing from the Influence of a rad 

– Figure 6.1

• A review of the relationship between

radand . a

• The velocity changes direction, 

not magnitude.

• The magnitude of the centripetal 

acceleration is:

2

rada
R


=

• In terms of the speed and period (time to make one complete 

revolution)

 
 =  =

R R
a

T T

2

rad 2

2 4



A wheel with radius 0.5m is rotating at a constant angular speed of 3 rad/s. What is 

the linear speed of a point on the rim of the wheel?

Solution: In this question the relationship between angular velocity and linear 

velocity must be known. From the definition of angular speed, it is the number of 

radians per second. This is given as:

𝜔 =
2𝜋

𝑇

Where T is the period of rotation (i.e. the amount of time it takes for one full 

rotation). We see from the formula sheet that the relation for linear velocity has 

these values in it, giving the relationship & answer:

𝑣 =
2𝜋𝑅

𝑇
= 𝜔𝑅 = 3 0.5 = 1.5 𝑣 = 1.5  m/s

1 rad=360 0 / 2𝜋 =57.3 0 

1 𝑟𝑒𝑣/𝑠 =  2𝜋 rad/s



Circular motion and Gravitation
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A Review of Uniform Circular Motion----Section 

3.4

Velocity: tangent to the circle with constant magnitude 𝑣1 = 𝑣2 = 𝑣

Acceleration: arad = 
𝑣2

𝑅
, always pointing toward the center of the 

circle.

  known as the centripetal acceleration

A new concept

Period (T, in s): Time for the object to complete one circle.

New relationships between v, R, and T:

 Velocity  𝑣 =
2π𝑅

𝑇

 Acceleration:  arad = 
𝑣2

𝑅
=

4π2𝑅

𝑇2

Another new concept

 Frequency (f, in s-1, or, Hz): revolutions per second.

Relationship between T and f:  f = 1/T



6.1 Force in Circular 

Motion

Question: How can an object of mass m maintain 

its centripetal acceleration?

Answer: A centripetal force (pointing to the center 

of the circle) must act on the object to maintain the 

centripetal accelertion. 

The magnitude of the net centripetal force:

  Fnet = Frad = 𝑚
𝑣2

𝑅

Note: 𝑚
𝑣2

𝑅
 itself is not a force. It is equal to Frad. In the absence of a 

centripetal force, the object 
moves at a constant velocity

With a centripetal force provided by 
a string, the object moves along a 
circular orbit

Courtesy of Wenhao Wu



Example 6.1 Model Airplane on a 

String

Given: mass m = 0.500 kg

 radius R = 5.00 m

 period T = 4.00 s.

Find: Tension force in the string, FT.

with the horizontal x-axis

pointing toward the center

of the circle and the y-axis

pointing up vertically

σ 𝐹𝑥 = 𝑚𝑎𝑟𝑎𝑑, 

    𝐹𝑇 = 𝑚
𝑣2

𝑅

    σ 𝐹𝑦 = 0, 

 𝐹𝑙𝑖𝑓𝑡 + (−𝑚𝑔) = 0

   with  𝑣 =
2𝜋𝑅

𝑇

Courtesy of Wenhao Wu



Copyright © 2020, 2016, 2012 Pearson Education, Inc. All Rights Reserved

A Tether Ball Problem – Example 6.2

• Refer to the worked example on page 156.

2 2

rad 2

42
, sin

0, cos ( ) 0sin

x T

y T

R
F ma F m m

R TT

F F mgR L
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Conical Pendulum Tether Ball 

Problem – Example 6.2

Center-seeking Force: Tension

Circular Motion



Example 6.2 A Tether Ball Problem

Given: mass m,

 length of string L

 period T

Find: Tension in the string, FT.

 Angle with vertical, 

𝐹𝑇𝑠𝑖𝑛𝛽 = 𝑚
𝑣2

𝑅
= 𝑚

4𝜋2𝑅

𝑇2 = 𝑚
4𝜋2𝐿𝑠𝑖𝑛𝛽 

𝑇2

𝐹𝑇 = 𝑚
4𝜋2𝐿 

𝑇2 𝑐𝑜𝑠𝛽 =
𝑔𝑇2

4𝜋2𝐿
and

σ 𝐹𝑥 = 𝑚𝑎𝑟𝑎𝑑,       𝐹𝑇𝑠𝑖𝑛𝛽 = 𝑚
𝑣2

𝑅
= 𝑚

4𝜋2

𝑇2

 σ 𝐹𝑦 = 0,               𝐹𝑇𝑐𝑜𝑠𝛽 + (−𝑚𝑔) = 0

with  𝑣 =
2𝜋𝑅

𝑇

and
  R = L𝑠𝑖𝑛𝛽



Conical Pendulum

What is the period of this conical pendulum ?

 𝑎𝑟 =
𝑣2

𝑅
 , 𝑅 = 𝐿 sin 𝜃 and  𝑇 =

2𝜋𝑅

𝑣
 

 So; 𝑎𝑟 = (
2𝜋𝑅

𝑇
)21

𝑅
=

4𝜋2𝑅

𝑇2

  σ 𝐹𝑦 = 𝑚𝑎𝑦 = 𝐹 cos 𝜃 − 𝑚𝑔 = 0 

 →  𝐹 cos 𝜃 = 𝑚𝑔 → 𝐹 =
𝑚𝑔

cos 𝜃
 

 σ 𝐹𝑥 = 𝑚𝑎𝑥 = 𝑚𝑎𝑟  =  𝐹 sin 𝜃 =
𝑚𝑣2

𝑅
=

𝑚𝑔 sin 𝜃

cos 𝜃

  ∴ 𝑎𝑟 = 𝑔 tan 𝜃

So;  𝑎𝑟 =
𝑔 sin 𝜃

cos 𝜃
=

4𝜋2𝑅

𝑇2   →  tan 𝜃 =
4𝜋2𝑅

𝑇2𝑔
=

4𝜋2𝐿 sin 𝜃

𝑇2𝑔

 ∴ 𝑇 = 2𝜋
𝐿 cos 𝜃

𝑔
  (the period is independent of mass)

All information is in 

the equations in red



The “Giant Swing”:

a) Make a free body diagram 

of the seat including the 

person on it.

b) Find the time for one 

revolution for the indicated 

angle of 30o

c) Does the angle depend on 

the weight of the 

passenger?

a) The person moves on a radius of R=3+5sin30=5.5m

 𝑎𝑟 =
𝑣2

𝑅
  and  𝑇 =

2𝜋𝑅

𝑣
 

b)  σ 𝐹𝑦 = 𝑚𝑎𝑦  →  𝐹 cos 30 = 𝑚𝑔 → 𝐹 =
𝑚𝑔

cos 30
 

 σ 𝐹𝑥 = 𝑚𝑎𝑥  →  𝐹 sin 30 =
𝑚𝑣2

𝑅
=

𝑚𝑔 sin 30

cos 30

 𝑣 = 𝑅𝑔 tan 30 = 5.5 ∗ 9.8 ∗ 𝑡𝑎𝑛30 = 5.58
𝑚

𝑠

 𝑇 =
2𝜋5.5

5.58
= 6.19 𝑠

c)   The net force is proportional to mass that divides out in 

റ𝐹 = 𝑚 റ𝑎 .The angle is independent of mass.

6.5

From a Brazos 

county fair



Given: radius R = 250 m

 ms = 0.90

Find: vmax

Example 6.3

Rounding a Flat Curve, page 157

𝑦

𝑥

𝑚𝑔

𝑛

റ𝑓𝑠

Solution:

The source of centripetal force is static friction force provided by the tires.

Equalize the maximum friction force to the force required by circular motion (m/R ) vmax
 2    



Un-Banked Curve
Given: 𝑟 = 50 𝑚, m= 1000 𝑘𝑔, 𝑣 = 14

𝑚

𝑠
 and  𝜇𝑠 = 0.6

  𝐹𝑓𝑟 > 𝐹𝑟  (no skidding)

Friction force is smaller than radial force

  𝐹𝑓𝑟 < 𝐹𝑟  (skidding)

 𝐹𝑁 = | − 𝐹𝐺| = 𝑚𝑔 = 1000 ∗ 9.8 = 9800 𝑁
 𝐹𝑓𝑟 = 𝜇𝑠𝐹𝑁 = 0.6 ∗ 9800 = 5900 𝑁

𝐹𝑟 = 𝑚𝑎𝑟 = m
𝑣2

𝑟
= 1000 ∗

142

50
= 3900 𝑁

So, no skidding at 𝜇𝑠 = 0.6

By changing friction to 𝜇𝑠 = 0.25
𝐹𝑓𝑟 = 𝜇𝑠𝐹𝑁 = 0.25 ∗ 9800 = 2500 𝑁 < 𝐹𝑟   (Skidding)

The maximum safe velocity

  σ 𝐹𝑦 = 𝑚𝑎𝑦 = 𝐹𝑁 = 𝑚𝑔 = 0 →𝐹𝑁 = 𝑚𝑔 

σ 𝐹𝑥 = 𝑚𝑎𝑥 = 𝑚𝑎𝑟 = m
𝑣2

𝑟

 𝐹𝑓𝑟,𝑚𝑎𝑥 = 𝜇𝑠𝐹𝑁 = 𝜇𝑠𝑚𝑔 = 𝑚
𝑣𝑚𝑎𝑥

2

𝑟

  ∴ 𝑣𝑚𝑎𝑥
𝑠𝑎𝑓𝑒

= 𝜇𝑠𝑔𝑟

Friction force is larger than radial force



6-52 . As the bus rounds a flat curve at constant speed, a package 

suspended from the luggage rack on a string makes an angle with the 

vertical as shown.

  σ 𝐹𝑦 = 𝑚𝑎𝑦 = 0 →𝑇 cos 30 − 𝑚𝑔 = 0 

  ∴ 𝑇 =
𝑚𝑔

cos 30

 

σ 𝐹𝑥 = 𝑚𝑎𝑥→𝑇 sin 30 = m
𝑣2

𝑟

 ∴ 𝑣 =
𝑟𝑇 sin 30

𝑚
=

𝑚𝑔

cos 30
∗

𝑟 sin 30

𝑚
= 𝑔𝑟 tan 30

 → 𝑣 = 9.8 ∗ 50 ∗ 𝑡𝑎𝑛30 = 16.8
𝑚

𝑠

What is the velocity of the bus?

What is the radial 

acceleration?

What is the radius of the 

curve?



Example 6.4 Rounding a Banked Curve, 

page 158

No need to rely on friction. 

The horizontal component of 

the normal force is the source 

of the centripetal force.

Given:   radius R = 250 m

Design:  vmax = 25 m/s

Find:   

𝑛

𝑛𝑥

𝑛𝑦

𝑚𝑔

𝑥

𝑦



tan𝛽 =
𝑣2

𝑔𝑅

nsin𝛽 = 𝑚
𝑣2

𝑅

 ncos𝛽 = 𝑚𝑔

σ 𝐹𝑥 = 𝑚𝑎𝑟𝑎𝑑,     𝑛𝑠𝑖𝑛𝛽 = 𝑚
𝑣2

𝑅

σ 𝐹𝑦 = 0,     𝑛𝑐𝑜𝑠𝛽 + (−𝑚𝑔) = 0
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Rounding a Banked Curve – Example 6.4

• The centripetal force comes only from a component of 

normal force

2

2
rad, sin

tan

0, cos ( ) 0

x

y

F ma n m
R

gR
F n mg


 






= = 

=
= + − = 







No Skidding on Banked Curve

Frad

gF=

sinrf
rf

cosrf



No Skidding on Banked Curve
The key to this problem is to realize that the net force 𝐹𝑛𝑒𝑡 causes the car to move along the curve.

 𝐹𝑁 sin 𝜃 + 𝑓𝑟 cos 𝜃 = 𝐹𝑛𝑒𝑡

 𝐹𝑁 cos 𝜃 − 𝐹𝑔 − 𝑓𝑟 sin 𝜃 = 0  ∴ 𝐹𝑔 = 𝑚𝑔 and 𝑓𝑟 = 𝜇𝑠𝐹𝑁

 𝐹𝑛𝑒𝑡 = 𝐹𝑟𝑎𝑑 = 𝑚𝑎𝑟𝑎𝑑 = m
𝑣2

𝑟

Use;

  σ 𝐹𝑦 = 𝑚𝑎𝑦 = 0 

 σ 𝐹𝑥 = 𝑚𝑎𝑥 = 𝑚𝑎𝑟𝑎𝑑 = m
𝑣2

𝑟

𝐹𝑁 sin 𝜃 + 𝜇𝑠𝐹𝑁 cos 𝜃 = 𝐹𝑛𝑒𝑡 = m
𝑣2

𝑟
= 𝐹𝑁 (sin 𝜃 + 𝜇𝑠 cos 𝜃)....(1)

𝐹𝑁 cos 𝜃 − 𝜇𝑠𝐹𝑁 sin 𝜃 = 𝐹𝑔 = 𝑚𝑔 = 𝐹𝑁 (cos 𝜃 − 𝜇𝑠 sin 𝜃)..........(2)

 

Divide equation (1) by equation (2);

(sin 𝜃 + 𝜇𝑠 cos 𝜃)

(cos 𝜃 − 𝜇𝑠 sin 𝜃)
=

𝑣 
2

𝑔𝑟

𝑣 = 𝑔𝑟
(sin 𝜃 + 𝜇𝑠 cos 𝜃)

(cos 𝜃 − 𝜇𝑠 sin 𝜃)

Note:

For special case  𝜇𝑠=0;

 𝑣𝑑𝑒𝑠𝑖𝑔𝑛
 = 𝑔𝑟 tan 𝜃  and  tan 𝜃 =

𝑣 
2

𝑔𝑟

For special case  𝜃=0o;

 ∴ 𝑣𝑑𝑒𝑠𝑖𝑔𝑛
 = 𝜇𝑠𝑔𝑟   (unbanked curve)



6-51: When the system rotates about the rod the strings are extended as 

shown. (The tension in the upper string 𝑇𝐻 is 80 N)

a) The block moves in a circle of radius

  𝑟 = (1.25𝑚)2−(1.00𝑚)2= 0.75𝑚

 Each string makes an angle 𝜃 with the vertical pole

  cos 𝜃 =
1.00

1.25
 → 𝜃 = 36.9°

This block has an acceleration of  𝑎𝑟 =
𝑣 

2

𝑟

b) What is the tension in the lower string?

  σ 𝐹𝑦 = 𝑚𝑎𝑦 = 0 →𝑇𝐻 cos 𝜃 − 𝑇𝐿 cos 𝜃 − 𝑚𝑔 = 0 

∴ 𝑇𝐿 = 𝑇𝐻 −
𝑚𝑔

cos 𝜃
= 80𝑁 −

4.00𝑘𝑔 ∗ 9.8
𝑚
𝑠2

𝑐𝑜𝑠36.9
= 31𝑁

 

c) What is the speed of the block? 

 σ 𝐹𝑥 = 𝑚𝑎𝑥→(𝑇𝐻 + 𝑇𝐿) sin 𝜃 = m
𝑣2

𝑟

 ∴ 𝑣 =
𝑟(𝑇𝐻+𝑇𝐿) sin 𝜃

𝑚
=

0.75 80+31 𝑠𝑖𝑛36.9

4
= 3.53

𝑚

𝑠



          at the top

          

    at the bottom

6.2 Motion in a Vertical 

Circle

Example 6.5 Dynamics of a Ferris 

wheel at a constant speed, page 158

Given: m = 60.0 kg

 R = 8.00 m

 T = 10.0 s    (v = 2R/T) 

Find the normal force:

 (a) at the top (nT)

 (b) at the bottom (nB)

(a) At the top

      𝑛𝑇 − 𝑚𝑔 = 𝑚𝑎𝑇 = 𝑚(−
𝑣2

𝑅
) 𝑛𝑇 = 𝑚𝑔 − 𝑚

𝑣2

𝑅
= 𝑚(𝑔 −

𝑣2

𝑅
)

(b) At the bottom

      𝑛𝐵 − 𝑚𝑔 = 𝑚𝑎𝐵 = 𝑚(
𝑣2

𝑅
) 𝑛𝑻 = 𝑚𝑔 + 𝑚

𝑣2

𝑅
= 𝑚(𝑔 +

𝑣2

𝑅
)

Courtesy of Wenhao Wu



Work out the radial acceleration of the moon around the earth.

𝑎𝑟 =
𝑣2

𝑅
  and  𝑣 =

2𝜋𝑅

𝑇
   g=9.8 𝑚/𝑠2

𝑇 = 27.3 𝑑 ∗
24 ℎ

1 𝑑
 ∗

3600 𝑠

1ℎ
= 2.36𝑥106𝑠  and  𝑅 = 3.84𝑥108𝑚

 

So; 𝑣 = 10.22 ∗ 102 𝑚

𝑠
 𝑎𝑟 = 27.2 ∗ 10−4𝑚/𝑠2 ≈ 3 ∗ 10−4 𝑚

𝑠^2
   g





Ferris wheel



Top:

 𝑎𝑟 =
𝑣2

𝑅
  and  𝑇 =

2𝜋𝑅

𝑣
 

 σ 𝐹𝑦 = 𝑚𝑎𝑦 = 𝐹𝑁 − 𝑚𝑔 = −
𝑚𝑣2

𝑅

→ 𝐹𝑁 = 𝑚(𝑔 −
𝑣2

𝑅
)

The force which the seat applies to the 

passenger is smaller than his weight.

For,  
𝑣2

𝑅
= 𝑔  passenger is starting to fly 

off.

Bottom:

 𝐹𝑁 − 𝑚𝑔 =
𝑚𝑣2

𝑅
→ 𝐹𝑁 = 𝑚(𝑔 +

𝑣2

𝑅
)

Passenger  in Ferris wheel is pressed into the 

seat.

Ferris wheel



Model Airplane on a String – Example 6.1

• How hard must you pull on the string to keep the airplane flying in a circle?

• T=4s  m=0.5 kg

© 2016 Pearson Education, Inc.

u =
2pR

T
   

Fxå = marad ,    FT = m
u 2

R
  

Fyå = 0,         Flift + -mg( ) = 0

ì

í
ï

î
ï

v 2 =  (T R/ m ) 2



snowboarding

C. Just like elevator accelerating down    F-mg = m (-a )      F = m ( g-a )

The net force F  always down, but a=0 in A. a=positive in B, a=negative  in C



You're snowboarding down a slope. The free-body 

diagram in the figure represents the forces on you 

as you

a) go over the top of a mogul.

b) go through the bottom of a hollow 

between moguls. 

c) go along a horizontal stretch.

d) go along a horizontal stretch or over 

the top of a mogul.

© 2016 Pearson Education, Inc.

Clicker question



You whirl a ball of mass m in a fast vertical circle 

on a string of length R. At the bottom of the circle, 

the tension in the string is five times the ball's 

weight. The ball's speed at this point is given by

a)   gR 

b)     4gR

c)    6gR

d)  6  gR

Clicker question

F T  = 5mg = mg +(m/R) v2



You whirl a ball of mass m in a fast vertical circle 

on a string of length R. At the top of the circle, the 

tension in the string is five times the ball's weight. 

The ball's speed at this point is given by

a)   gR 

b)     4gR

c)    6gR

d)  6  gR

Clicker question

F T  = 5mg = -mg +(m/R) v2



Properties of Gravitation Forces

● Always attractive.

● Directly proportional to both the masses involved.

● Inversely proportional to the square of the center-to-

center distance between the two masses.

● Magnitude of force is given by:

● G is the gravitational constant: 

6.3 Newton's Law of 

Gravitation

Courtesy of Wenhao Wu



Gravitation

1 2

2

-11 2 2

       

G=gravitational constant = 6.673(10) 10 /

g

Gm m
F

r

Nm kg

=



E

The weight  of a body of mass m on the earth's surface with 

radius 

Note: 

R  is



2 2
    or   E E

E E

Gm m Gm
mg g

R R



= = =

Newton’s Law of Gravitation
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Compared to the earth, planet X has twice the mass and twice 

the radius. This means that compared to the earth’s surface 

gravity, the surface gravity on Planet X is 

Clicker question

A. four times as much. 

B. twice as much. 

C. the same.

D. half as much.

E. one-quarter as much.



Gravitational Forces (I)

‘‘Attractive Force”

MM ME

    FG = G                       

             r 2  

ME

MM



Gravitational attraction

Note: Two particles of different mass exert equally 

strong gravitational force on each other
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The mass of the moon is 1/81 of the mass of the earth. Compared 

to the gravitational force that the earth exerts on the moon, the 

gravitational force that the moon exerts on the earth is

A. 812 = 6561 times greater. 

B. 81 times greater. 

C. equally strong. 

D. 1/81 as great.

E. (1/81)2 = 1/6561 as great.

Clicker question



Why is the Aggie not falling  off the earth?

Remember there is equally strong attraction between the earth and the 

Aggie and vice versa

Compare the acceleration of the Aggie to the acceleration of the Earth

   𝐹 = 𝐺
𝑚𝐴𝑚𝐸

𝑟𝐸
2 = 𝑚𝐴𝑔 

  →𝑔 = 𝐺
𝑚𝐸

𝑟𝐸
2

Forces are equal between  the Aggie  and  the Earth

   𝐹 = 𝐺
𝑚𝐴𝑚𝐸

𝑟𝐸
2 = 𝑚𝐴𝑎𝐴 = 𝑚𝐸𝑎𝐸       𝑎𝐸=g

  →
𝑎𝐴

𝑎𝐸
=

𝑚𝐸

𝑚𝐴
≈ 1023  with 𝑚𝐸 = 6𝑥1024𝑘𝑔

  𝑚𝐴 = 60 𝑘𝑔 (Aggie’s mass)            𝑎𝐸=10−23g
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Newton's Law of Gravitation – Figure 6.12

• Always attractive.

• Directly proportional to the masses involved.

• Inversely proportional to the square of the separation between 

the masses.

• Magnitude of force is given by:

1 2

2g

m m
F G

r
=

• G is gravitational constant:

11 2 26.674 10 N m kgG −=  



Cavendish balance (1798)

Cavendish(1798) announced that he has weighted the earth



Cavendish Tension balance (1798)

Air current in the room is negligible to the gravitational attraction force

   𝐹 = 𝐺
𝑀𝑚

𝑟2 = 1.33𝑥10−10𝑁 (Torsion force)

 and 𝑀 = 0.5 𝑘𝑔; 𝑚 = 0.01 𝑘𝑔 𝑎𝑛𝑑 𝑟 = 0.05𝑚

When torsion and gravitational forces are in equilibrium;

  1.33𝑥10−10 = 𝐺
0.5∗0.01

0.052

  →𝐺 = 6.6𝑥10−11 𝑚2𝑁

𝑘𝑔2

Molecular motors (kinetics); F = 1.33𝑥10−12𝑁
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This May Be Done in a Lab – Cavendish 

Experiment (1798)

• The slight attraction of the masses causes a nearly imperceptible 

rotation of the string supporting the masses connected to the mirror. 

→ use this to calculate G.

• Use of the laser allows a point many meters away to move through 

measurable distances as the angle allows the initial and final 

positions to diverge.



• The weight of an object near the surface of 
the earth is:

• With this we find that the acceleration due 
to gravity near the earth's surface is: 

6.4 Weight and Gravitation Acceleration near the surface of the 

Earth

Courtesy of Wenhao Wu
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Even Within the Earth Itself, Gravity 

Varies – Figure 6.17

• Distances from the center of rotation and different densities 

allow for interesting increase in F g.



g    = 9.80 m/s2

RE  = 6.37 x 106 m

ME = 5.96 x 1024 kg

→  rE = 5.50 x 103 kg/m3 

          = 5.50 g/cm3 ~ 2  x  rRock

Average Density of the Earth



Gravitational Force Falls off Quickly – 

Figure 6.15

• The gravitational force is proportional to 1/r2, and 

thus the weight of an object decreases inversely 

with the square of the distance from the earth's 

center (not distance from the surface of the earth). 

© 2016 Pearson Education, Inc.



Earth mass 𝑀𝐸 = 6𝑥1024𝑘𝑔 and radius 𝑅𝐸 = 6.37𝑥106𝑚

   𝐹 = 𝐺
𝑀𝐸𝑚

𝑅𝐸
2 = 𝑚𝑔

  →𝑀𝐸 =
𝑔𝑅𝐸

2

𝐺
When radius is variable like 𝑟 with variable mass 𝑚𝑖𝑛𝑠𝑖𝑑𝑒 of Earth. 

Then;

  𝐹 = 𝐺
𝑚𝑖𝑛𝑠𝑖𝑑𝑒 𝑚

𝑟2   and  𝑚𝑖𝑛𝑠𝑖𝑑𝑒 =
𝑀𝐸

4

3
𝜋 𝑟3

4

3
𝜋 𝑅𝐸

3
=

𝑀𝐸 𝑟3

𝑅𝐸
3

    ∴ 𝐹 = 𝐺
𝑀𝐸𝑚

𝑅𝐸
3 𝑟

What is the magnitude of the 

gravitational force inside, on 

the surface, and outside the 

earth??

At the center  r=0 and F=?
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Gravitation Applies Elsewhere – Figure 

6.18

• Mars   calculate the weight on the surface

• See the worked example on pages 166–167.

m=w/g=3.92 x 104  N / 9.8 m/s

since G is the same everywhere

Earth weight of 

mars 

lander=39,200 N

Example Mars



• When v is not large enough, you fall back onto the earth.

• Eventually, Fg balances and you have an orbit.

• When v is large enough, you achieve escape velocity.

6.5 Satellite Motion
 

 What happens when the velocity increases? 



Satellite Motion: What Happens When 

Velocity Rises? 

• Eventually, Fg balances and you have orbit.

• When    is large enough, you achieve escape velocity.

• An orbit is not fundamentally different from familiar 

trajectories on earth. If you launch it slowly, it falls back. 

If you launch it fast enough, the earth curves away from 

it as it falls, and it goes into orbit.

© 2016 Pearson Education, Inc.



• If a satellite is in a circular orbit with speed vorbit, the gravitational force 
provides the centripetal force needed to keep it moving in a circular 
path. 

Circular Satellite Orbit

The orbital speed of a satellite

𝐺
𝑚𝑚𝐸

𝑟2 = 𝐹𝑔 = 𝐹𝑟𝑎𝑑 = 𝑚
𝑣2

𝑟
 

→  𝑣𝑜𝑟𝑏𝑖𝑡 =
𝐺𝑚𝐸

𝑟

The period of a satellite

𝑣 =
2𝜋𝑟

𝑇

𝑇 =
2𝜋𝑟

𝑣
= 2𝜋𝑟

𝑟

𝐺𝑚𝐸
=

2𝜋𝑟3/2

𝐺𝑚𝐸

Courtesy of Wenhao Wu



Circular Satellite Orbit Velocity

• If a satellite is in a perfect circular orbit with 

speed   orbit, the gravitational force provides the 

centripetal force needed to keep it moving in a 

circular path. 

© 2016 Pearson Education, Inc.



Circular orbit period
2

2

/

E

E

G m m mv

r r

v Gm r

 
=

=

2
32 2

2
E E

r r r
T r

v Gm Gm

 
= = =

The larger r then slower the speed 

and the larger the period



Example 6.10:

Earth mass 𝑀𝐸 = 5.98𝑥1024𝑘𝑔 and radius 𝑅𝐸 = 6380𝑘𝑚
 𝑟 = 6380𝑘𝑚 + 300𝑘𝑚 = 6.68𝑥106𝑘𝑚

a) What is the speed?

 
𝑚𝑣2

𝑟
= 𝐺

𝑀𝐸𝑚

𝑟2

  →𝑣 = 𝐺
𝑀𝐸

𝑟
= 7730

𝑚

𝑠

b) When is the period?

  𝑇 =
2𝜋𝑟

𝑣
=

2𝜋(6.68𝑥106)

7730
= 5430 𝑠

c) What is the radial acceleration?

   𝑎𝑟𝑎𝑑 =
𝑣2

𝑟
=

(7730)2

6.68𝑥106 = 8.95
𝑚

𝑠2

Weather Satellite



a) Height above the surface of Earth.

  ℎ = 𝑟 − 𝑟𝐸

Earth mass 𝑀𝐸 = 6𝑥1024𝑘𝑔 and radius 𝑟𝐸 = 6380𝑘𝑚
𝑚𝑠𝑣2

𝑟
= 𝐺

𝑀𝐸𝑚𝑠

𝑟2  → 𝑣 =
2𝜋𝑟

𝑇
  and  𝑇 = 1 𝑑𝑎𝑦 = 86400 𝑠𝑒𝑐

𝑚𝑠(2𝜋𝑟)2

𝑟𝑇2
= 𝐺

𝑀𝐸𝑚𝑠

𝑟2
 →  𝑟3 =

𝐺𝑀𝐸𝑇2

4𝜋2
= 7.54𝑥1022𝑚3 

  ∴ 𝑟 = 4.23𝑥107𝑚
  → ℎ = 𝑟 − 𝑟𝐸=36000 km≈ 6𝑟𝐸

b) What is the velocity?

  →𝑣 = 𝐺
𝑀𝐸

𝑟
= 3070

𝑚

𝑠

Geo-synchronous Satellite (at the equator of Earth)

Not to scale
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Calculations of Satellite Motion –

Example 6.10 (not Geo-synchronous)

• Work on an example of a relay designed to stay in orbit 

permanently.

• See the worked example on page 169.



Satellite   motion

• An artificial satellite is orbiting the earth (M earth = 5.97E+24 kg and radius = 38E+6 m) in a circular orbit. If 
the orbital speed of the satellite is 4000 m/s, what is the radius of the satellite’s orbit (measured from the center 
of the earth)?

• Solution: Here we use combine two equations given to us. The first is the relationship between linear velocity 
and the radius & period of rotation of an object in circular motion:

• 𝑣 =
2𝜋𝑟

𝑇

• The second equation is the period of orbit of a satellite:

• 𝑇 =
2𝜋𝑟 ൗ3

2

𝐺𝑀𝑒

• If we arrange this second equation, we find that we can substitute in the linear velocity:

•
𝑇

2𝜋𝑟
=

𝑟
1
2

𝐺𝑀𝑒
⇒

1

𝑣
=

𝑟

𝐺𝑀𝑒

• We are given G from the formula sheet (6.67E-11 N*m2*kg-2), and the values of Me (5.97E+24 kg) and v (4000 
m/s) in the problem. We can re-arrange the equation to solve for r, and we get:

•
𝐺𝑀𝑒

𝑣2 =
6.67×10−11 5.97×1024

4000 2 ≈ 2.5 × 107 r= 2.5 × 107
m



If an Object is Massive, Even Photons 

Cannot Escape 

• A "black hole" is a collapsed sun of immense 

density such that a tiny radius contains all the 

former mass of a star.

• The radius to prevent light from escaping is 

termed the "Schwarzschild Radius."

• The edge of this radius has even entered pop 

culture in films. This radius for light is called the 

"event horizon."

© 2016 Pearson Education, Inc.



Hawking @ HS ranch
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operates two gravitational wave observatories in unison: 

the LIGO Livingston Observatory in Livingston, 

Louisiana, and the LIGO Hanford Observatory, on the 

DOE Hanford Site ,located near Richland, Washington. 

These sites are separated by 3,002 kilometers (1,865 miles)

Laser Interferometer Gravitational-

Wave Observatory (LIGO)

Collison of two black holes 1.3 billion years ago, each 

black hole was about 30 times mass of the Sun, and 3 solar 

mass were converted to gravitational waves.

https://en.wikipedia.org/wiki/Livingston,_Louisiana
https://en.wikipedia.org/wiki/Livingston,_Louisiana
https://en.wikipedia.org/wiki/Hanford_Site
https://en.wikipedia.org/wiki/Richland,_Washington


Sun properties

Steven Hawkins is associated with the department of 

Physics and Astronomy at TAMU

Sun mass 𝑀𝑆 = 1.99𝑥1030𝑘𝑔 and radius 𝑅 = 6.96𝑥108𝑚
Average density of Sun;

 ρ =
𝑀𝑠

𝑉
=

𝑀𝑠
4

3
𝜋𝑅3

=
1.99𝑥1030

4

3
𝜋(6.96𝑥108)3

= 1.41
𝑔

𝑐𝑚3 

→40% denser than water

Temperature: 5800o K at surface and (1.5x107)o K in the interior of 
Sun. (highly ionize plasma gas)



A Gravitational wave  was created in a collision of 

two black holes 1.3 billion years ago, each black 

hole was about 30 times mass of the Sun, and 3 

solar mass were converted to gravitational waves

A. In this process total energy was conserved

B. In this process the gravitational acceleration was  g

C. In this process also light from the merger reached LIGO

Clicker question



To what fraction of sun’s current radius would the sun have to be 

compressed to become a black hole?

𝑅𝑠 = 2𝐺
𝑀𝑠

𝑐2 =
2𝑥6.67𝑥10−11𝑥1.99𝑥1030

(3𝑥108)2 = 2.95 𝑘𝑚 

  →
𝑅𝑠

𝑅 
=

2.95𝑥103

6.96𝑥108 = 4.2𝑥10−6

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 𝑓𝑜𝑟 𝑙𝑖𝑔𝑡 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑅𝑠 = 2𝐺
𝑀𝑠

𝑐2    

(Schwarzschild radius)

For 𝑅 > 𝑅𝑠 → light can be emitted

For 𝑅 < 𝑅𝑠 → no light can be emitted (Black hole)



Example: Problem 7, Exam II, Fall 2016

(a) A satellite of mass 80.0 kg is in a circular orbit around a spherical planet Q of radius 3.00×106 m. 

The satellite has a speed 5000 m/s in an orbit of radius 8.00×106 m. What is the mass of the planet Q?

(b) Imagine that you release a small rock from rest at a distance of 20.0 m above the surface of the 

planet. What is the speed of the rock just before it reaches the surface?

Given:

● About the satellite (ms = 80.0 kg, rorbit = 8.00×106 m, 

   v = 5000 m/s) 

 ● About the planet Q(RQ = 3.00×106 m)

Find: (a) The mass of the planet Q (mQ) 

 (b) Speed of a rock after falling h = 20.0 m.

rorbit

RQ
x

(a) 𝐺
ms𝑚𝑄

𝑟𝑜𝑟𝑏𝑖𝑡
2 = 𝐹𝑔 = 𝐹𝑟𝑎𝑑 = ms

𝑣2

rorbit

𝑚𝑄 =
rorbit𝑣

2

G

(b) First, find the gravitational acceleration 

𝑔𝑄 

       near the surface of the planet Q.
       

       ms𝑔𝑄 = 𝐺
ms𝑚𝑄

𝑅𝑄
2       𝑔𝑄 =

𝐺
𝑚𝑄

𝑅𝑄
2

      Then, apply the kinematic equation

 𝑣2
2 = 𝑣1

2 + 2𝑔𝑄ℎ

       to v2 find with v1 = 0.
Courtesy of Wenhao Wu







Phys 201, FALL 2023
Exam 1
Avg: 56
N = 103
A: 85 – 100
B: 75 – 84
C: 55 – 74
D: 40 – 54
F: < 40
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