Chapter 10 Dynamics of Rotational Motion

(Conservation of angular momentum)

a la b| = |a| |b|sin@



Concepts of rotational motion

One radian is the angle at which the arc s

3 WO rd d iCti on arV has the same length as the radius r.
Acceleration @ > angular acceleration & _ s=r
Distance d > angle 6 Euclidean geometry
Velocity ¥ = angular velocity w 325-265 BC

circumference
Angle 0 /diameter=3.141593

How many degrees are in one radian ? (rad is the unit if choice for rotational motion)

0 = ; - ratio of two lengths (dimensionless)
S 2nr
—=——=2nrad = 360°
360°  360° r 1rad __ 57°
1rad = o o288 = 57° .« Factors of unity oo OF T —

1 radian is the angle subtended at the center of a circle by an arc with length equal to the radius.

Angular displacement A0 of a rotating

J1’i;:i(| body over a time interval Af:

Angular velocity w T

6, -0, A6 |rad A0 |(rad

Wapy = = -»w=lim-— |[— Nek

t, —t; At S At-0 At S

Other units are; .
rev 2mrad rev 2w rad
1 = Cl—=1rpm =——- (@)

]
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Angular acceleration <
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Relationship between linear and anqular quantities

(0

As AB
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Chapter 10  Dynamics of Rotational Motion

@ To understand the concept of torque.

@ To relate angular acceleration and torque.

@ To work and power in rotational motion.

@® To understand angular momentum.

@ To understand the conservation of angular momentum.
@ To study how torques add a new variable to equilibrium.
@ To see the vector nature of angular quantities.

Ultimate goal is to derive a rotational
version of Newtons second law



Rotational Dynamics: |
F=ma=m(R a) - r(torque) =F -R=(Mm R?) «a
(@).. 1 =m R? (D). 1=) mR/’
(moment of Inertia (moment of Inertia
for smgle particle) foragroup of particles)




What is torque? When you apply a force to rotate an object about a pivot or an axis,
the effectiveness of your action depends not only on the magnitude of the force you apply,

but also on a quantity known as the moment arm.

What is the moment arm? It is the perpendicular distance from the pivot or the axis to

the line of action of the applied force.

Torque = (Magnitude of Force) X (Moment Arm)

T=Fl Units: N-m

Close to axis of
F_rotation: not very
a e s

effective

Farther from
more effective

4 \
Oriented radial t
/

the axis of rotation:
No effect

axis of rotation:




Torque is a \Vector

The Magnitude and the Direction of a Torque
Using the examples in the figure on the right:
(a) Torque by ﬁl

T, = Fl4

counter-clockwise, positive
(b) Torque by 132

T, = — Kl

clockwise, negative
(c) Torque by 133

T3 =F3l3=0

F, tends to cause counterclockwise rotation
about point O, so its torque is positive:
o)) ‘== +F][l

The line of action of ﬁ3
passes through point O,
so the moment arm

and hence the torque
are zero.

=5 . .
F, tends to cause clockwise rotation about point
O, so its torque is negative: 7o = —F»l,



10.2 Torque and Angular Acceleration

Again, cut the rigid body into many small pieces, A,
B, C,.... The force acting on piece A is Fj.

Consider the motion of piece (particle) A. According
to Newton’s Second Law,

Fptan = MyQgtan = M1y
_ _ 2
Tp = Tabptan = Myuria
Sum over the torques for all the pieces:
T+ T +Tc... = Myuria + mgria + meréa + -«
= (murf + mers + meré + - )a
or
Ytr=Ia

This is also known as Newton’s Second Law for
rotational motion.

Total force on particle A

Tangential component:
Only this component
contributes to torque. i Radial component

Path of particle A as body rotates



Torque 7 =rxF

, \;,? y
(out of page) £~ ~~Line of
r actign
( 7\ of F
[ = rsin ¢
O
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Note: F(rad)has no torgque with respect to O

lever arm



(a) Diagram of situation

The angle between rand F is ¢ = 109°
[ = 0.80sin71°

0.76m

A Plumbing Problem to Solve — Example 10.1

Point at which force acts ~ Line of action of force
> v

~

asamans

Position vector from point O to the
w s IV*A point at which the force acts

Angle ¢ between line ¢= 1Oq° ; ;

of action of force and

.
o’
.

’
’
2 2 . T TSN e Point where axis of
radial direction Fog ¥ S
: b rotation intersects
T is positive. v — | plane of diagram
F=000NV

" Moment arm (perpendicular distance from
axis of rotation to line of action of force)
(b) Free-body diagram

7= Fl =900N - (0.76) = 680Nm (magnitude)

© 2016 Pearson Education, Inc.



( James finds it difficult to muster
: enough torque to turn the stubborn
% bolt with the wrench. He wishes
, he had a pipe handy to effectively
§ lengthen the wrench handle. but
i doesn't. He does. however, have
a piece of rope. Will torque be
i increased if he pulls as hard on
| the rope as shown?

no

Appendix B Linear and Rotationa! Motion



Note: 7= F R sIin@

Point of
Leverarm : | or R, Axisof ~ application
L rotation /M ~__ of forea
(Perpendicular distance...) | Ry s "
0
r=F (Rsind)=F R, . 2 ;
(a)
SR
: 4] }F_L
1* F-
: |
r=(Fsmnd)R=F R & R g



Note: sign of 7

r,=F, (R, sin90%) e
= (50.0 N)(0.300 m)=15.0N-m
r,=F, (R, sin60")
=(50.0 N)(0.500 m)(0.866)

=21.7N-m
Thet =101 (c.c.w)+ T, (c.w.)

=7,(+1) +7,(-1)
=(15.0N-m)-(21.7 N-m)
=-6.7/N-m—>6.7N-m(c.w.)

R, =0.300m R, =0.500 m

F]=50N



Clicker question

Torgues on a Rod The 3 forces have equal magnitude
A rod is pivoted at its center. Three

© AT > Ty > T3 forces of equal magnitude are applied
e b) T:>13>T1, as shown. Which of the following
statements correctly describe the
order in the magnitudes of the torques

by these three forces with respect to
the pivot?

'C) T2>T3>T1

>~ @

<

—

F;

© 2016 Pearson Education, Inc.



Problem 10.1: Calculate the torque about point O due

to the force F for each situation shown. The rod has a
length 4m and the force a magnitude of 10N

Let counterclockwise torques be positivet = F - [ =

0® . 0e

F-rsing
90.0° NSl F

a)
b)
c)
d)
¢)
f)

T=+10N - (4m) sin90° = 40Nm (cc = +) (a) (b)

T=+10N - (4m) sin60° = 34Nm (cc = +) - \f

T=+10N - (4m) sin30° = 20Nm (cc = +) - - I

t=—10N - (2m)sin60° = —=17.3Nm (cw = =) 00L~7 T

T = ON since force acts on axis @ @

7= 0N since force has line of action through the F

focus /\60,00 F
0 0@ i
(e)



30.0°

O
- &—2.00 m—>—3.00 m—>

t=F:-l=F -rsing
T4 = _Fl . ll = —8N:-5m=—-40Nm
T, =F, -, =12N - 2msin30° = +12Nm

zri =1, +1, = —28Nm (cw = —)



In order not to fall the acrobat keeps the her center of gravity directly
above the rope. She creates proper torques in this balancing act.

Why Do Acrobats Carry Long Bars?

@Pearson Copyright © 2020, 2016, 2012 Pearson Education, Inc. All Rights Reserved



Clicker Question

Rotating Cylinders

Relationship of torque and angular acceleration
Xt = Ia rotational analog of Newton’s law £F = ma

daad

Which choice correctly ranks the magnitudes of the angular accelerations of
the three cylinders?

A a3 >a, >aq B.a; >a, > as
C.a2>a1>a3 D.a1=a2=a3

page 289

© 2016 Pearson Education, Inc.



Finding the moment of inertia for common shapes

(a) Slender rod, (b) Slender rod, (c) Rectangular plate, (d) Thin rectangular plate,
axis through center axis through one end axis through center axis along edge
1= L mr? 1= i 1= LM+ 1) I= M
12 3 12 3

o7

(e) Hollow cylinder (f) Solid cylinder (g) Thin-walled hollow (h) Solid sphere (i) Thin-walled hollow

cylinder sphere

2 2

1

I= %M(R,z +Ry) f= MR I = MR? 1= SMR? 1= SMR?




Re-visit an Earlier Problem

90N |
Example 10.2 B

A cable unwinding from a winch.
Find:
(a) Magnitude of the angular acceleration

(b) Final angular velocity
(c) Final speed of cable

Solution:
The torque by the tension force 7=FI =(9.0 N) X (0.06 m) = 0.54 Nem.

The moment of inertia about the given axis | = %MR2 = %(50 kg)(0.06 m)? = 0.090 kgem?

Therefore, the angular acceleration a = /1 = (0.54 Nem)/(0.090 kgem?) = 6.0 rad/s?
Angular Displacement 6— 6, =s/r = (2.0 m)/(0.06 m) = 33 rad

Final angular velocity W = \/oo(z, + 20(0-6,) = \/Za(G —0,) =20 rad/s

Final speed of cable v =rw = (0.06 m)(20 rad/s) = 1.2 m/s



Re-visit Another Problem

S>>

- T
v Mg
M
T’
@ Bucket

i

Example 10.3 Given: M, R, m, and h

Find: (a) « for winch, a for bucket, and tension force.
(b) v for the bucket just before hitting the water
(c) o for the winch just before hitting the water

Solution:
Linear motion of the bucket mg—-T=ma ......... (1)
Rotational motion of the winch

=la or TR=(EMR)a........ 2)
From (2):  T=-MRa=-Ma ............. 3)
Substitute (3) into (1): mg — %Ma =ma
Linear acceleration: a=mg/(m + M/2) = g/(1 + M/2m)
Tension force T =Ma/2 = Mg/(2 + M/m)

Angular acceleration: a=a/R =g/[R(1 + M/2m)

Final v and w calculated using the kinematic equations:
1 2gh

1+M/2m - RA|1+M/2m




Re-visit One more Problem

’<_>, y
UCITI 0
S N M w =0
h
)
Z\
f—Y— ¢ 0
Ucm
T
>
X
mg

Example 10.4 Given: Given M, R, and h

Find: (a) Center of mass acceleration and angular acceleration

(b) Tension force
(c) Velocity of the center of mass v,

Solution:

Apply Newton’s Second Law for linear motion
Mg-T=Ma ...........ceeiiinin.n. (1)

Apply Newton’s Second Law for rotational motion
r=la or TR=(EMR)a......... )

From (2):  T=-MRa=:Ma ............... 3)

Substitute (3) into (1): Mg — %Ma = Ma

Linear acceleration: a=2g/3

Angular acceleration: a=al/R =29/3R

Tension force T =Mg/3

Final v, using the kinematic equations

v, = \2ah = \[4gh/3




Example 10.5 on page 291: Rolling without slipping
What is the acceleration of a rolling bowling ball?

Given: Given M, R, and
Find: (a) a., and « (also, f, required minimum z)

Solution:

Apply Newton’s Second Law for linear motion
Mgsing—f,=Ma g, ..covoeeieinnennnnnn. (1)

Apply Newton’s Second Law for rotational motion
r=la of fR=(EMR)a........ )

From (2):  f,==MRa==Mag, ...cocoooonre 3)

Substitute (3) into (1): Mgsin,B—EMacm = Ma,,

. . 5 .

Linear acceleration: acm = - gsinf

Angular acceleration: o= aJR% = 75—R gsinf3

Static friction force f, = EMRa = % Mgsinf

Mg~ Mg cos3

Minimum static coefficient of
friction
= fJin = (M)/Mgconﬂ
2

=7 tanp




A Bowling Ball Rotates on a Moving Axis — Example 10.5

o

What s the ball's linear acceleration a., ,?

b.  Whatis the friction force 7,? (note: it is static friction = not slipping)

(a) (b)
Translation: XF,. = Mgsinf — f; (1)
Rotations: 57 = f,R = I,,a = @MRZ) a (2)

2 CM,X» 2
Aemx = Ra fsR = EMRZ(aT) fs= _Macm,x

From(1) Mgsinf — %Macm’x = Ma,,

© 2016 Pearson Education, Inc.



Clicker question

A solid bowling ball rolls down a Gem-x
ramp. Which of the following

forces exerts a torque on the

bowling ball about its center?

A. the weight of the ball

B. the normal force exerted by the ramp
C. the friction force exerted by the ramp
D. more than one of the above

E. depends on whether the ball rolls without slipping

© 2016 Pearson Education, Inc.



10.3  Work and Power in Rotational
Motion

Again, cut the rigid body into many small pieces, A, B,
C,.... The force acting on piece A is Fj.

If the angular position of A changes by A8, the work
done by a constant force F, acting on A is:

WA = FA,tan(RAQ) = TAAH

Sum over contributions from all the pieces, the total
work

W =1A0 = 1(6, — 6,)

A few notes: (a) Applicable for constant torque .
(b) Work has units N-m.

Power is the rate at which work is done;

At At
(Compare with linear motion in which case P = Fv)

Total force on particle A

Tangential component:
Only this component

contributes to torque. Radial component

. P,

Path of particle A as body rotates



Work and power in rotational motion |
s

Aw ,,,;5%~45 = (F,., RAG =746
f}\ Child applies 1\
tangential force A S = R A %

) o Ao § =t @t
oh ot Fotales
G = (@t_—*@,)

(@

Overhead view A 4 A{
of merry-go-round !
J v
(b)
Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley ? _,; T (/U L'JO- I[{




10.4  Angular Momentum

In Chapter 8 we defined the momentum of a particle as p = mv,
we could state Newton’s Second Law as F = Al%m0 i—i.

Here we define the angular momentum of a rigid body:

L=Iw
Notes: It is also a vector, same as w.
Units: kg-m?/s

Angular momentum of a point particle:

L = mvl (kg-m?/s)
Notes: (a) [ is effective the “moment arm”
(b) a particle moving along a straight line can still have
an angular momentum about a pivot or rotational
axis




— - —

Angular momentum | =r x [

L = angular momentum of particle;
perpendicular to plane of motion

/ (if origin O is in that plane),

2z magnitude L = mvl



Example 10.7: A kinetic sculpture

Given: Two small metal sphere of masses m; = m, = 2.0 kg
Uniform metal rod of mass M = 3.0 kg and length s = 4.0 m

Angular velocity 3.0 rev/minutes about a vertical axis through the middle

Find: Angular momentum and Kinetic energy

s=4.0m

< > = 3D
O 30 K * O\ (;Jev/mfh
_ 20kg 779 Axis of 2.0 kg
Solution: rotation
(a) Angular momentum
Total moment of inertia liotat = Isphere 1+ lsphere 2 + Irog = M1(8/2)? + my(s/2)? + (1/12)Ms?
=20 kgem?
Angular momentum L = lw = (20 kgem?)(3.0+27/60 s1) = 6.2 kgem?/s

(b) Kinetic energy K=(1/2)Ilw?=0.96J




Calculate the angular momentum and kinetic energy of a solid uniform sphere with a
radius of 0.12 m and a mass of 14.0 kg if it is rotating at 6.00 rad/s about an axis
through its center

I =<MR? =2« (14kg)(0.12m)? = 0.0806 kgm’

2
m
L =Iw = 0.0806 kgm? * 6.0 rad = 0.484 kgT

K 1I 2 1L L 0.484 k m’ 6 rad = 1.45
= — = — = — . — | * = .
2W > w > gS ra J



10.5 Conservation of Angular
Momentum

The Relationship Between Torque and Angular Momentum

. . Aw : IAw : A(lw ) AL
Since Yt=Ila=1lim — = lim — = lim U9) _ i AL
At—0 At At—0 At At—0 At At—0 At
We can state Newton’s Second Law for rotational motion as
. AL
Y1 = lim—
At—0 At

Conservation of Angular Momentum
I 11 =0,
Then L = constant




Angular Momentum Is Conserved —
Figure 10.19

* The first figure shows the
figure skater with a large
moment of inertia.

* In the second figure, she
has made the moment
much smaller by bringing
her arms in.

e Since L Is constant, w
must Increase.

@Pearson Copyright © 2020, 2016, 2012 Pearson Education, Inc. All Rights Reserved



Conservation of angular momentum
L=rxp

IL|=(rp)sin90=(r)(mv) V=T
t’ L= (r*m)w

L > — wi<w, Conservation of L



Example 10.9:

Given: lpogy, ;= 3.0 kgem? lboay, £ = 2.2 kgem?
Maumbben = 2.0 Kg each
Raumbben, i = 1.0 M Raumbben, 1= 0-20 m
w;=1revin2s=2n/2 rad/s =« rad/s o~ -
Find: (a) wy (b) compare K with K; g =
Solution: (a) for w;
BEFORE AFTER

Total initial moment of inertia

Itotal,i = Ibody, it 2|dumbbell,i = (3.0 kgem?) + z[mdumbbell(Rdumbbell, i)z] =13 kgem?
Total final moment of inertia

Itotal,f = Ibody,f + 2|dumbbell,f = (2.2 kgem?) + z[mdumbbell(Rdumbbell, %] = 2.6 kgem?

Apply the conservation of angular momentum liotar i @i = liotar f W
so that Ws = ligaj @il ligta ¢ = 5.0m rad/s = 2.5 rev/s

(b) compare K with K;

Ki = (1/2)1y; 0;2 =64 ] Kt = (1/2)ligpa w2 = 320 ]

total,i




Q10.12

A spinning figure skater pulls
his arms in as he rotates on the
ice. As he pulls his arms 1n,
what happens to his angular
momentum L and kinetic
energy K?

A. L and K both increase.

B. L stays the same; K increases.

C. L increases; K stays the same.

D. L and K both stay the same.
E. None of the above.

© 2016 Pearson Education, Inc.
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10.6  Equilibrium of a Rigid
Body

The equilibrium of a point particle is determined by the conditions of
YE =0 and X FE,=0.

The Equilibrium of a Rigid Body

For the equilibrium of a rigid body, both its linear motion and rotational motion must
be considered. Therefore, in addition to

YE =0 and Y F, =0,
We must add another condition regarding its rotational motion
Y1 =0.
This third condition can be set up about any chosen axis.




Strategy for Solving Rigid Body Equilibrium Problems

General principle: ~ The net force must be zero.
The net torque about any axis must be zero.

@ Draw a diagram according to the physical situation.

@ Analyze all the forces acting on each part of a rigid body.

@ Sketch all the relevant forces acting on the rigid body.

@ Based on the force analysis, set up a most convenient x-y coordinate system.
@ Break each force into components using this coordinates.

@® Sum up all the x-components of the forces to an equation: ), F, = 0.
@ Sum up all the y-components of the forces to an equation: ). F;, = 0.
@ Based on the force analysis, set up a most convenient rotational axis.
@ Calculate the torque by each force about this rotational axis.

@ Sum up all the torques by the forces to an equation: ), 7 = 0.

@ Use the above three equations to solve for unknown quantities.




A New Equilibrium Condition — Figure 10.24

* Now, in addition to =F, =0 and =F, =0, we also must

add =z =0.

Where do you place the strin
so that this cutout will hang
horizontally?

o
o

|. Hold the cutout by any
point on its edge and allow
it to hang freely. A vertical
line drawn from your
hand passes through
the center of gravity.

© 2016 Pearson Education, Inc.

2. Repeat the process, holding the
cutout at a different point. The
spot where your
two lines cross is
the center of
gravity.

i

~
When suspended from the center of
gravity, the cutout hangs level.




CONCEPTUAL ANALYSIS 10.5
B

locks in equilibrium

Three rectangular blocks rest on a horizontal sheet of ice. The blocks
are free to both slide along the ice and rotate about their centers of mass
as they slide. Figure 10.25 shows how one or more forces, all with a
magnitude of F, act along the short end of each block. Which block is
in equilibrium?

A. Block 1
B. Block 2
C. Block 3
D. None of the blocks is in equilibrium.

SOLUTION To be in equilibrium, both the net force and the net torque
must be zero. Because only one force acts at the edge of block 1, neither
the net force nor the net torque can be zero. On block 2, the torques
produced by the two forces are in opposite directions, so the net torque

A FIGURE 10.25

is zero. Because both forces point in the same direction, however, the
net force acting on block 2 cannot be zero. On block 3, the forces point
in opposite directions, so the net force is zero. But both forces produce
a torque in the counterclockwise direction, so the net torque on block 3
cannot be zero. Therefore, none of the blocks is in equilibrium. The
correct answer is D.



Balancing on a Teeter-Totter — Figure 10.26

* The heavier child must sit closer to balance the torque from the smaller child.

Your torque is Ty, = +(90 kg) gx
Your friend is 3.0 m — x from the pivot, and her torque is: Tfyjeng = —(60 kg) X g(3.0 m — x).

For equilibrium, Xt = 0.

Tyou t Tfriend = 0
+(90kg)gx — (60kg)g(3.0m—x) =0

x=1.2m
Y
90 kg 60 kg I
n
Qyou =X Qf‘riend
I\ I\ 2 X
i l AXis of rofation l
‘[\ 1 30m | Wyou (P'VOT) Weriend
(a) Sketch of physical situation (b) Free-body diagram

© 2016 Pearson Education, Inc.



Walking the plank

L =60m

r

In equilibrium board does not tilt

l

Sle

D=15m L
7

Plank, mass

M = 90 kg cg mass m

Given; L = 6m,D = 15m,M = 90kg /\ € S

How heavy is Mr.Throckmorton?

B L D
Tthrockmorton — M 2" 9 g

D
Tplank = M P g

Zr=0=n(z=3)=4(3

M*D_90*1.5

m(L—D)=MD—>m=L_D—6_1.5 = 30kg




The broom balances at its center of gravity. If you
saw the broom into two parts through the center of
gravity, you'll have a "handle part” and a "broom part.”

[f you then weigh each part on a scale, you'll find the
part that weighs more will be the

cmmm-w

a) handle part,
b) broom part.

¢) neither, for both will weigh the same. J
\ 20

Appendix B Linear and Rotational Mosion b) 313




A fishy wind chime

What 1s the counter weight of the mobile shown?
g 0.4m ¥
0.1m 0.15m 0.25m
| e i< > >
X_, =0 I
cg
i - afroé o
5 e & ST
m=? = B = ¥
0.1kg 0.1kg

Ymx; m(=0.1)+ (0.1) - (0.15) + (0.1) - (0.4)
0=Xeg= =

Y m, m + 0.1 + 0.1
~(0.1) - (0.15) + (0.1) - (0.4)

0.1

m

= 0.55 kg

The center of gravity must be on the suspension point. So that the sum of
torques 1s equal to zero.



Example 10.12
Climbing a ladder (length is 5
m)

4 //A <,?1_7_ m
Find « /;géfé{/}'-/‘ricli()llless
(a) Normal and friction forces f - .
at the base of the ladder / . wom | f o
(b) Minimum g at the base /;:f/ iy Lom g Tw = 180N
(c) Magnitude and direction of O w = 800N IgoON
the contact force at the base h\fg i *;\ o
B e 53 B 75°
(a) (b) (c)
Solution: (a) Y FE, =0 fi—n, =0
S F,=0 n,— (800 N) — (180 N) = 0 n, =980 N
YX1=0 n,(4.0 m) — (180 N)(1.5 m) — (800 N)(1.0 m) =0

(b) Minimum U =

n, = 268 N
f, =268 N
(268 N)/(980 N) = 0.27

(c) Fg=+/(268 N)2+(980 N)2= 1020 N

0 = tan‘l(

980 N
268 N

)=75°




Balanced Forces

During
Exercise

Next we note that if we take torques about the elbow joint (point C),
the resulting torque equation does not contain E, Ey, or T, because
the lines of action of all these forces pass through this point. The torque
equation is then simply

E’I’C——'IW"dI:,:O.

From this equation, we find that
w Iw
T =— d = »
Al g T dsiné

To find E, and E,, we could now use the first condition for equi-
librium: ZF, = 0 and ZF, = 0. Instead, for added practice in using
torques, we take torques about the point A where the tendon is attached:

(I~ dw
=

The negative sign shows that our initial guess for the direction of E,
was wrong; it is actually vertically downward.

Finally, we take torques about point B in the figure and remember
to use the shortest perpendicular distance to the vector # to simplify
our calculations:

(1~ dw+dE,=0 and E,=-

I
Stg=lw~hE, =0 and E,=—;li.

Evaluating our expressions forw = 50N,d = 0.10m,/ = 0.50 m,
and 8 = 80°, we get tan® = h/d, and we find h = dtanf =
{0.10 m)(5.67) = 0.57 m. We then have

_ (0:50m) (S0 N)
(0.10 m)(0.98)

= 250N,

Tendon actually
inserts close (o
elbow—moved
here for clarity

i _(O.SOm - 0.1
2 0.10 (@)
_ (0som)(soN) |
. 0.57m b :

The magnitude of the force at the elbow is
E=VE}+ E;=200N.

As we mentioned earlier, we have not explicitly used the first con-
dition for equilibrium—that the vector sum of the forces is zero. To
check our answer, we can compute L F, and X F, to verify that they
really are zero. Such checks help verify internal consistency. Checking,
we obtain

SF = E ~ T,= 44N — (250N) cos 80° = 0,
SF=E +T,~w
= 200N + (250 N) sin80° — 50N = 0.

REFLECT Notice how much we have simplified these calculations by
using a little ingenuity in choosing the point for calculating torques so
as to eliminate one or more of the unknown quantities. In the last step,
the force T has no torque about point B; thus, when the torques of T;
and 7, are computed separately, they must add to zero.

Practice Problem: Double the weight of the dumbbell. What is the
new tension T in the tendon connected to the biceps muscle at point B?
Answer: SI0N.

© 2016 Pearson Education, Inc.

oB
/

Body in equilibrium /
(dumbbell plus !
forearm)

Elbow

We don’t know the sign of this component;
we draw it positive for convenience.

(b)

Refer to the
worked example
on page 308.



Atwood’s machine problem 10.58

58. II Atwood's machine. Figure 10.77 0 illustrates an Atwood's machine. Find the linear
accelerations of blocks A and B, the angular acceleration of the wheel C, and the tension
in each side of the cord if there is no slipping between the cord and the surface of the
wheel. Let the masses of blocks 4 and B be 4.00 kg and 2.00 kg, respectively, the moment
of inertia of the wheel about its axis be 0.300 kg - m?, and the radius of the wheel be
0.120 m.

Figure 10.77

© 2016 P



Atwood’s machine problem 10.58

10.58. Set Up: A accelerates downward, B accelerates upward and the wheel turns clockwise. Apply > F, =ma, to

blocks A and B. Let +y be downward for A and y be upward for B. Apply >z =1« to the wheel, with the clockwise
sense of rotation positive. Each block has the same magnitude of acceleration, a, and a = Ra. Call the tension in the

cord between C and AT, and the tension between C and BT;.
Solve: For A, > F =ma, gives m,g-T,=m,a. For B, > F =ma, gives T,—myg=mza. For the wheel,

T.R-T,R=la=1(@/R) and T,-T; = (%) a. Adding these three equations gives

I
(m,—mg)g = mA+mB+F a

a=| — T2~ - 1g = 400 kg - 2.00kg > 1(9.80 m/s?) = 0.730 m/s”
m.+m,+ IR 2,00 kg + 2.00 kg + (0.300 kg)/(0.120 m)
2
a=2- 0.730mis” _ 6.08 rad/s’
R 0.120 m

T,=m,(g —a) = (4.00 kg)(9.80 m/s* — 0.730 m/s*) = 36.3 N
T, =mg(g +a) = (2.00 kg)(9.80 m/s® + 0.730 m/s?) =21.1 N

Reflect: The tensions must be different in order to produce a torque that accelerates the wheel when the blocks accelerate.

© 2016 Pearson Education, Inc.



A simple Hinge problem 10.56

56.1 One end of a 1.2-m-long beam is hinged to a vertical wall, and the other end is held up
by a thin wire as shown in Figure 10.7510, The wire will break if its tension exceeds 1000

N. What is the maximum mass that the beam can have and still be supported by the wire?

Figure 10.75

Problem 5615,

10.56. Set Up: Apply >z =0 to the beam. Denote the length of the beam as 1. The free-body diagram of the beam

is shown below. Consider the torques about the point where the beam joins the wall.
F 1

iz

2 el
! _.---'@-l .
A

mg

Solve: (@) >7=0 gives mgIEcos3O°—TI sin30°=0. If the maximum permissible tension is T = 1000 N, the

2(1000 N)

maximum mass of the beam is m = %tan 30°= = tan30° =1.8x10% kg

© 2016 Pearson Education, Inc.  Reflect: Note that the length of the beam does not enter into the calculation.



Hanging a farm gate

Hinge A: no horizontal force! T sin30°

Example 11-61

2m - 2Zm =|2m

. . . . “k——4.00 m—! :H
a)What is the tension in wire CD? ~— = tH
b)What is horizontal force on hinge B? S——
c) What is combined vertical force on hinges A and B?

Use coordinates with the origin at B. Let H_>A and E exerted by the hinges A and B. The

problem states that H_>A has no horizontal component. Replace the tension T by its
horizontal and vertical components.

a) . (g =0 - +(Tsin30)(4m) + (T cos30)(2m) —w(2m) =0

w
T(2 si = T = = 322N
(2sin30+cos30) =w — (2 5030 + cos 30) 3

b) 2 F, =ma, » Hg,—Tcos30=0-> Hg, =T cos30 = (322N) cos30 = 279N

¢c)XF, =ma, » Hy,+ Hp, +Tsin30 —w =10
2> H,, + Hg, = w — Tsin30 = 600N — (322N )sin30 = 439N



Carrying a box up the stairs

Turning point

W =mg = 200%9.8 =1960N
ZC =0 = R(1.25m)(cos45) — W (0.375m)(cos45) = 0

0.375
—>FA HW_SSSN

ZF—O—>FA+FB W=0—F,=W—F, = (1960 — 588) = 1372N

The person B below applies more than twice the force of A



How a car’s clutch work

The clutch disk and the gear disk is
pushed into each other by two forces
that do not impart any torque, what is the
final angular velocity when they come
together?

Lz—before — L

Lo, +10,=(, +]B)a)ﬁnal

z—after

lo,+1L,0,
(L, +13)

— a)ﬁnal =

Wp
F —F
BEFORE s & ~—
s H
Iy :
Forces F and —F are along the axis of rotation,
and thus exert no torque about this axis on
either disk.
v ¥
— —
F —-F
AFTER s— ~<if—




Disk A and B are connected or disconnected by
clutch C. Disk A is made from a lighter material

Problem 10. 66 °
- What is the original kinetic energy K; of disk A? \‘i/ & \f/
I = : L o1, =3, T
Initially;
L = woly and K; = ~I,w
Final;

I =1, + 31, = 41, (after coupling together)

Conservation of angular momentum;
w,
Li =wyly =Ly = WI = W4I, —>W=T"

Final Kinetic energy;

K —1IW2—4I Woz—lK
3f T2 T 2442 T4t
~AK =K —K; = —Ki= —2400 J (thermal energy developed during coupling)

So, original energy;
3
K; = _Z(_MOO) = 3200/



w, = 850 rev/min

Y

« Fy=160 N

m =50 kg

4= 1505
w= 0
W= Wy

A =

A4 K
w-Yo -

If the grindstone comes to a complete stop after 7.5s, what was the
coefficient of kinetic friction between the axe and the stone? (Assume

negligible friction in the rest of the system)

(A =0,260w, W=50.0ky

Sz, = 160N

At mwﬁwhr peeg lecopdlon Welng wentic
Q.chuu\\‘w»\: n flwd o

Az }j_r_ng( -"—M—W-”“) = Y90 ol [s

WWeg »ns

Popy S, 7= 1 ny -+ xsowidnin (B e :
N 2
i"‘( = ;kﬁ K S =Tl cofuict! Yhot & b 0~ 0 [s
1= 4w (solik Lisk)
L= I
ES
NNk | ,
v; __-j..mﬂdz—ji('EOkg\LO.QEOM\(_l\'q(“*Isﬁ
s
0- gaochls Lo lLacas* o D
- fT'SUS i E.—EL-. -l-ljzyéiﬁ ) O.L{%j

et



m =0.010 kg

A bullet is shot into a solid disk of wood at rest as shown. It embeds itself in

v =500m/s
e Uk the disk, a distance of % R above the disk’s center. What will the resulting
02m angular velocity of the disk?
e W.=0 (»QF_
/-5
S )
m
belose afer
No exdernal forques co Loi=lg = 500w wz0,010ky M= 2kgq R=0.4m
1 :_
el wik 1= Rz 01m Foc Mee dlsk T £ MR = L (2hg) (0.4) = 0: J6legmn
L( = 1"—__ UJF
Lg - I’J\\S\&* Ihul\c’r = 0.16% ' t MLR/L)
= 06w m + (0,010 o,gM = 0. 160 kg-w
T =0 9. E‘J( (IDWM“}ﬂ . - Iw o art be 1o rHHJ
vl 2 3¢ Vg
L _ (0,00 LsoowJS\OQm\ koz 4wt = (o 01 kq) 500»«]5 = |150 7

u)% = T.g, 0.160Y wa» w - l{,TE_ | S %:&0.\60’*“5-“ )K(‘nﬂ&wt I) = O*lql” T

G = 63 cob|s Vinehie entegy 65 o vesult oF de colficion

T\\ea’; s & \afje dcranse i



Angular Quantities Are Vectors —
Figure 10.29

* The “right-hand rule” gives us a vector’'s direction.

Angular velocity and angular momentum:
Curl the fingers of your right hand in the
direction of rotation. Your thumb then points in
the direction of angular velocity and momentum.

L

You must use your right hand!

|

Torque: Curl the fingers of your right hand in
the direction the torque would cause the body to
rotate. Your thumb points in the torque’s
direction.

mﬁ*@m—»

nghl-hand screws are threaded so
that they move in the direction of
the torque applied to them.

@Pearson Copyright © 2020, 2016, 2012 Pearson Education, Inc. All Rights Reserved



Vector nature of angular quantities

When the flywheel and its axis are stationary,
they will fall to the table surface. When the
flywheel spins, it and its axis ‘“float” in the air
while moving in a circle about the pivot.

Circular motion

of flywheel axis Flywheel
(precession) @
5 Flywheel
; axis
it e
Pivot—( ( —
e | (—
Path followed = | V .
by free end of | @ | Rotation of
axis E ) flywheel

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley



Gyroscopes Can Add Stability Figure 10.32

When the flywheel is rotating, the system
starts with an angular momentum L; parallel
to the flywheel’s axis of rotation.

 The gyroscopic motion - Rotation of flywheel
adds stability to bicycles, N i e g

footballs, bullets and A (¥ L
more.

Initial angular
momentum due to
rotation of flywheel

(a)

Now the effect of the torque is to cause
the angular momentum to precess around
the pivot. The gyroscope circles around
its pivot without falling.

y 5
& AL

i
View from above -

(b)
@Pearson Copyright © 2020, 2016, 2012 Pearson Education, Inc. All Rights Reserved



A Laboratory Gyroscope — Figure 10.33

» Refer to the worked example on page 309.

This symbol represents the weight
force pointing into the page.

S P

Top view

(a) Top view of spinning cylindrical (b) Vector diagram
gyroscope wheel

@ Pearson
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Honda 600RR

Who races this bike?

Why can anybody race it, if he just
dares to go fast?

The oval track of a
World Speedway allows speeds
of 250 mph.



https://drive.google.com/file/d/1SZzKsN5be6u3Efbu8ii93si5JWg7EWJb/view?usp=sharing

A non rotating

When the flywheel is not rotating, its weight
creates a torque around the pivot, causing it
to fall along a circular path until its axis rests
on the table surface.

4
P 7 (direction given
by right-hand rule)
Pivot x
0= Axis |
2D W . Path of free end
(@)

Lo anno o P Ao

and rotating gyroscope

In falling, the flywheel rotates about the
pivot and thus has an angular momentum
L. The direction of L stays constant.

Pivot

0 .

Flywheel

View from above as flywheel falls

(b)

SopyrghtS2867 Pearson —e—prbtishingas restey
When the flywheel is rotating, the system
starts with an angular momentum L; parallel

to the flywheel’s axis of rotation.

/Rotation of flywheel

7 Torque due to weight
force (as in Figure 10.30)

Initial angular
momentum due to
rotation of flywheel

(@)

Copyright ® 2007 Pearson Education, Inc. publishing as Addison Wesley

Now the effect of the torque is to cause
the angular momentum to precess around
the pivot. The gyroscope circles around
its pivot without falling.

A

View from above %

(b)



Precesion Angular Velocity ()

A —
() is the rate —d) at which the axis moves | ! [ |

Ad> —
? =L
AZ=2?—At

L=1w

5, AL = AP o
2, T=— Analogousto X F = — A¢=|AL|
L]

A¢ lat] w

T r

QO=-"=" —- =" rad/s
At t L lw

W is the weight of the flywheel, and r is the distance from the pivot point of the
center of mass of the flywheel.






Faster than Gravity

A small marble is placed on the tee at
the very top of the raised end. A few
inches below it is a plastic cup. The
wooden board is held up by a wooden
ruler. The ruler is quickly removed,
allowing the board and the marble to
fall due to the force of gravity. The
center of percussion of the board is
the point that has the acceleration of
a free falling particle along the path
that it follows, all points beyond the
center of percussion descend with
accelerations greater than they would
have if they were particles moving
freely on their respective paths. This
is due to the board rotating about a
hinged end. Thus, the cup falls at a
faster rate than the marble, and the
marble lands in the cup.




Vector Multiplication

Scalar product A-B = ABcosd = AB, + AB, + A,B,
Vector product Ax é‘ — ABsinez‘é‘ _

Magnitude C must
< be multiplied with a
unit vector
perpendicular to A
and B

k
A, |=(AB,-AB,)i +(AB,~AB,)j+(AB,-AB,)k

|

X

(ol

I

> —




CMWW«W

Suppose that the height of a
rapidly-growing beanstalk on Earth
doubles each day. and in 36 days
reaches the Moon. The number of
days required to reach halfway to
the Moon would be

a) 18 days.
b) 27 days.
¢) 35 days.
d) None of these.

Appendix D Exponential Growth
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