
Chapter 10 Dynamics of Rotational Motion
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Concepts of rotational motion
3 word dictionary
Acceleration 𝒂 → angular acceleration ∝
Distance d → angle θ

Velocity 𝒗 → angular velocity 𝒘

Angle θ

How many degrees are in one radian ? (rad is the unit if choice for rotational motion)

  𝜽 =
𝑺

𝒓
 → ratio of two lengths (dimensionless)

𝑺

𝒓
=

𝟐𝝅𝒓

𝒓
= 𝟐𝝅 𝒓𝒂𝒅 ≅ 𝟑𝟔𝟎°

 𝟏 𝒓𝒂𝒅 ≅
𝟑𝟔𝟎°

𝟐𝝅
=

𝟑𝟔𝟎°

𝟔.𝟐𝟖
= 𝟓𝟕°  ∴ Factors of unity 

𝟏 𝒓𝒂𝒅

𝟓𝟕°
 or 

𝟓𝟕°

𝟏 𝒓𝒂𝒅

1 radian is the angle subtended at the center of a circle by an arc with length equal to the radius.

Angular velocity 𝒘

𝒘𝒂𝒗 =
𝜽𝟐 − 𝜽𝟏

𝒕𝟐 − 𝒕𝟏
=

∆𝜽

∆𝒕
 

𝒓𝒂𝒅

𝒔
 → 𝒘 = lim

∆𝒕→𝟎

∆𝜽

∆𝒕
 

𝒓𝒂𝒅

𝒔

Other units are;

𝟏
𝒓𝒆𝒗

𝒔
=

𝟐𝝅 𝒓𝒂𝒅

𝒔
 ∴ 𝟏

𝒓𝒆𝒗

𝒎𝒊𝒏
= 𝟏 𝒓𝒑𝒎 =

𝟐𝝅

𝟔𝟎

𝒓𝒂𝒅

𝒔

Euclidean geometry

325-265 BC

 circumference 

/diameter=3.141593



Angular acceleration ∝

∝𝒂𝒗=
𝒘𝟐 − 𝒘𝟏

𝒕𝟐 − 𝒕𝟏
=

∆𝒘

∆𝒕
 

𝒓𝒂𝒅

𝒔𝟐
 → ∝= lim

∆𝒕→𝟎

∆𝒘

∆𝒕
 

𝒓𝒂𝒅

𝒔𝟐

Relationship between linear and angular quantities

  𝐬 = 𝜽𝒓 → 𝒗𝒂𝒗 =
∆𝒔

∆𝒓
= 𝒓

∆𝜽

∆𝒕
= 𝒓𝒘𝒂𝒗

  ∴ ∆𝒕 → 𝟎 𝒈𝒊𝒗𝒆𝒔 𝒗 = 𝒓𝒘



● To understand the concept of torque.
● To relate angular acceleration and torque.
● To work and power in rotational motion.
● To understand angular momentum.
● To understand the conservation of angular momentum.
● To study how torques add a new variable to equilibrium.
● To see the vector nature of angular quantities.

Chapter 10 Dynamics of Rotational Motion

Ultimate goal is to derive a rotational 

version of Newtons second law
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What is torque? When you apply a force to rotate an object about a pivot or an axis, 

the effectiveness of your action depends not only on the magnitude of the force you apply, 

but also on a quantity known as the moment arm.  

What is the moment arm? It is the perpendicular distance from the pivot or the axis to 

the line of action of the applied force.  

Torque = (Magnitude of Force) × (Moment Arm)     𝜏 = 𝐹𝑙 Units: N∙m



The Magnitude and the Direction of a Torque
  

Using the examples in the figure on the right: 

(a) Torque by റ𝐹1 

   𝜏1 = 𝐹1𝑙1

  counter-clockwise, positive
  

(b) Torque by റ𝐹2 

   𝜏2 = − 𝐹2𝑙2

  clockwise, negative

(c) Torque by റ𝐹3 

   𝜏3 = 𝐹3𝑙3 = 0

Torque is a Vector



10.2 Torque and Angular Acceleration 

Again, cut the rigid body into many small pieces, A, 

B, C,…. The force acting on piece A is റ𝐹𝐴.

Consider the motion of piece (particle) A. According 

to Newton’s Second Law,

 𝐹𝐴,𝑡𝑎𝑛 = 𝑚𝐴𝑎𝐴,𝑡𝑎𝑛 = 𝑚𝐴𝑟𝐴𝛼

 𝜏𝐴 = 𝑟𝐴𝐹𝐴,𝑡𝑎𝑛 = 𝑚𝐴𝑟𝐴
2𝛼

Sum over the torques for all the pieces:

𝜏𝐴 + 𝜏𝐵 + 𝜏𝐶 … = 𝑚𝐴𝑟𝐴
2𝛼 + 𝑚𝐵𝑟𝐵

2𝛼 + 𝑚𝐶𝑟𝐶
2𝛼 + ⋯

    = (𝑚𝐴𝑟𝐴
2 + 𝑚𝐵𝑟𝐵

2 + 𝑚𝐶𝑟𝐶
2 + ⋯ )𝛼

or
                             σ 𝜏 = 𝐼𝛼 

This is also known as Newton’s Second Law for 

rotational motion.



Torque Fr =

Note:   F(rad)has no torque with respect to O



A Plumbing Problem to Solve – Example 10.1

•
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no



Note:  = F R sinq

...) distanceular (Perpendic

  :  R  or   l   arm Lever ⊥

 R  F s in R  F ⊥== )( q

 RFR s in F  == ⊥)( q

 R  F s in R  F ⊥== )( q



Note: sign of 

(c.w.) mN 6.7  mN 6.7-       

m)N (21.7 -m)N (15.0       

)1()1(      

)c.w.()c.c.w(

21

21

→=

=

−++=

+=



   net

mN 21.7     

m)(0.866)  N)(0.500 (50.0

6022

=

=

=

     

  sin R  F )(2



mN 15.0 m)  N)(0.300 (50.0

9011

==

=

     

  sin R  F )(1



R 1  =0.300 m    R 2 =0.500 m



Clicker question    

 Torques on a Rod

•   a) 𝜏1 > 𝜏2 > 𝜏3 

• 𝑏) 𝜏1 > 𝜏3 > 𝜏2

• 𝑐) 𝜏2 > 𝜏3 > 𝜏1 

•   𝑐) 𝜏1 > 𝜏3 > 𝜏2

• 𝑐) 𝜏1 > 𝜏3 > 𝜏2𝜏2 > 𝜏3 > 𝜏1

© 2016 Pearson Education, Inc.

The 3 forces have equal magnitude

A rod is pivoted at its center. Three 

forces of equal magnitude are applied 

as shown. Which of the following 

statements correctly describe the 

order in the magnitudes of the torques 

by these three forces with respect to 

the pivot?
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Why Do Acrobats Carry Long Bars?

In order not to fall the acrobat keeps the her center of gravity directly 

above the rope. She creates proper torques in this balancing act.



Clicker Question

Rotating Cylinders

Relationship of torque and angular acceleration

  Σ𝜏 = 𝐼𝛼 rotational analog of Newton’s law Σ𝐹 = 𝑚𝑎

Which choice correctly ranks the magnitudes of the angular accelerations of 

the three cylinders?

A. 𝛼3 > 𝛼2 > 𝛼1                          B. 𝛼1 > 𝛼2 > 𝛼3

C. 𝛼2 > 𝛼1 > 𝛼3          D. 𝛼1 = 𝛼2 = 𝛼3

© 2016 Pearson Education, Inc.

page 289



Finding the moment of inertia for common shapes



Re-visit an Earlier Problem 

Example 10.2

A cable unwinding from a winch.

Find:

(a) Magnitude of the angular acceleration

(b) Final angular velocity

(c) Final speed of cable

Solution:

The torque by the tension force   = Fl = (9.0 N)×(0.06 m) = 0.54 N•m.

The moment of inertia about the given axis I = 
1

2
𝑀𝑅2 =

1

2
(50 kg)(0.06 m)2 = 0.090 kg•m2

Therefore, the angular acceleration   = /I = (0.54 N•m)/(0.090 kg•m2) = 6.0 rad/s2

Angular Displacement   q – q0 = s/r = (2.0 m)/(0.06 m) = 33 rad

Final angular velocity   ω = ω0
2 + 2α(q – q0) = 2α(q – q0) = 20 rad/s

Final speed of cable   𝑣 = 𝑟𝜔 = (0.06 m)(20 rad/s) = 1.2 m/s

x

y

•

റ𝐹

R



Example 10.3  Given: M, R, m, and h

Find: (a)  for winch, a for bucket, and tension force.

          (b) v for the bucket just before hitting the water

          (c) w for the winch just before hitting the water

Solution:

Linear motion of the bucket mg – T = ma ………(1)

Rotational motion of the winch

   = I     or TR = (
1

2
MR2) ………(2)

From (2):  T = 
1

2
MR = 

1

2
Ma  ……………….…(3)

Substitute (3) into (1):   mg –
1

2
Ma = ma

Linear acceleration: a = mg/(m + M/2) = g/(1 + M/2m)

Tension force  T = Ma/2 = Mg/(2 + M/m) 

Angular acceleration:  = a/R = g/[R(1 + M/2m) 

Final v and w calculated using the kinematic equations:

 𝑣 =
2𝑔ℎ

1+𝑀/2𝑚
    and w =

1

𝑅

2𝑔ℎ

1+𝑀/2𝑚

Re-visit Another Problem 



y

o

Example 10.4 Given: Given M, R, and h

Find: (a) Center of mass acceleration and angular acceleration

        (b) Tension force

         (c) Velocity of the center of mass vcm

Solution:

Apply Newton’s Second Law for linear motion

  Mg – T = Ma ………………………(1)

Apply Newton’s Second Law for rotational motion

   = I     or TR = (
1

2
MR2) ………(2)

From (2):  T = 
1

2
MR = 

1

2
Ma  ……………….…(3)

Substitute (3) into (1):   Mg –
1

2
Ma = Ma

Linear acceleration:  a = 2g/3

Angular acceleration:   = a/R = 2g/3R

Tension force    T = Mg/3

Final vcm using the kinematic equations

  vcm = 2𝑎ℎ = 4𝑔ℎ/3 

Re-visit One more Problem 

x

y

•
R

T

mg



Example 10.5 on page 291: Rolling without slipping

What is the acceleration of a rolling bowling ball?

Given: Given M, R, and b

Find: (a) acm and  (also, fs, required minimum ms)        

Solution:

Apply Newton’s Second Law for linear motion

  Mgsinb – fs = Macm …………………(1)

Apply Newton’s Second Law for rotational motion

   = I     or  fs R = (
2

5
MR2) …..…(2)

From (2):  fs = 
2

5
MR = 

2

5
Macm  ……………..…(3)

Substitute (3) into (1):  Mgsinb –
2

5
Macm = Macm

Linear acceleration:  acm =
5 
7
gsinb

Angular acceleration:   =
acm

𝑅
=

5 
7𝑅

gsinb

Static friction force   fs = 
2

5
MR = 

2

7
 𝑀gsinb 

Minimum static coefficient of 

friction

        ms = fs/n = (
2𝑀gsinb 

7
)/Mgconb 

 = 
2

7
 tanb



•

A Bowling Ball Rotates on a Moving Axis – Example 10.5

© 2016 Pearson Education, Inc.
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A solid bowling ball rolls down a 

ramp. Which of the following 

forces exerts a torque on the 

bowling ball about its center?

A. the weight of the ball 

B. the normal force exerted by the ramp 

C. the friction force exerted by the ramp 

D. more than one of the above

E. depends on whether the ball rolls without slipping

Clicker question



10.3 Work and Power in Rotational 

Motion

Again, cut the rigid body into many small pieces, A, B, 

C,…. The force acting on piece A is റ𝐹𝐴.

If the angular position of A changes by ∆𝜃, the work 

done by a constant force റ𝐹𝐴 acting on A is:

 𝑊𝐴 = 𝐹𝐴,𝑡𝑎𝑛 𝑅∆𝜃 = 𝜏𝐴∆𝜃

Sum over contributions from all the pieces, the total 

work

 𝑊 = 𝜏∆𝜃 = 𝜏 𝜃2 − 𝜃1

A few notes: (a)  Applicable for constant torque 𝜏.

          (b)  Work has units N∙m.

Power is the rate at which work is done:

 𝑃 =
∆𝑊

∆𝑡
= 𝜏

∆𝜃

∆𝑡
= 𝜏𝜔

(Compare with linear motion in which case 𝑃 = 𝐹𝑣)



Work and power in rotational motion



10.4 Angular Momentum 

In Chapter 8 we defined the momentum of a particle as റ𝑝 = 𝑚 റ𝑣, 

we could state Newton’s Second Law as റ𝐹 = lim
∆𝑡→0

∆ റ𝑝

∆𝑡
.

Here we define the angular momentum of a rigid body:

𝐿 = 𝐼𝜔
Notes: It is also a vector, same as 𝜔. 

Units: kg∙m2/s

Angular momentum of a point particle:

                                𝐿 = 𝑚𝑣𝑙   (kg∙m2/s)

Notes: (a) 𝑙 is effective the “moment arm”

            (b) a particle moving along a straight line can still have   

                  an angular momentum about a pivot or rotational 

axis  



Angular momentum prL =



Example 10.7: A kinetic sculpture

Given: Two small metal sphere of masses m1 = m2 = 2.0 kg

 Uniform metal rod of mass M = 3.0 kg and length s = 4.0 m

 Angular velocity 3.0 rev/minutes about a vertical axis through the middle

Find: Angular momentum and Kinetic energy

Solution:

(a) Angular momentum

Total moment of inertia Itotal = Isphere 1 + Isphere 2 + Irod = m1(s/2)2 + m2(s/2)2 + (1/12)Ms2

 

           = 20 kg•m2 

Angular momentum  L = I𝜔 = (20 kg•m2)(3.0•2p/60 s-1) = 6.2 kg•m2 /s

(b) Kinetic energy  K = (1/2)I𝜔2 = 0.96 J



𝐼 =
2

5
𝑀𝑅2 =

2

5
∗ 14𝑘𝑔 0.12𝑚 2 = 0.0806 𝑘𝑔𝑚2

𝐿 = 𝐼𝑤 = 0.0806 𝑘𝑔𝑚2  ∗ 6.0 rad = 0.484 kg
𝑚2

𝑠

𝐾 =
1

2
𝐼𝑤2 =

1

2
𝐿𝑤 =

1

2
0.484 kg

𝑚2

𝑠
∗ 6 rad = 1.45 J

Calculate the angular momentum and kinetic energy of a solid uniform sphere with a 

radius of 0.12 m and a mass of 14.0 kg if it is rotating at 6.00 rad/s about an axis 

through its center 



The Relationship Between Torque and Angular Momentum

Since  σ 𝜏 = 𝐼𝛼 = 𝐼 lim
∆𝑡→0

∆𝜔

∆𝑡
= lim

∆𝑡→0

𝐼∆𝜔

∆𝑡
= lim

∆𝑡→0

∆(𝐼𝜔)

∆𝑡
= lim

∆𝑡→0

∆𝐿

∆𝑡

We can state Newton’s Second Law for rotational motion as

                                            σ 𝜏 = lim
∆𝑡→0

∆𝐿

∆𝑡

10.5 Conservation of Angular 

Momentum 

Conservation of Angular Momentum

 If  σ 𝜏 = 0,

 Then  𝐿 = constant
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Angular Momentum Is Conserved – 

Figure 10.19

• The first figure shows the 

figure skater with a large 

moment of inertia.

• In the second figure, she 

has made the moment 

much smaller by bringing 

her arms in.

• Since L is constant, ω

must increase.



Conservation of angular momentum

wIL

mrI

=

= 2

1L 2L
11wI= 22wI=

2

2

1
iii IK w=

5 kg

L=r x p

|L|=(rp)sin90=(r)(mv) v=r

Conservation of L



Example 10.9:

Given: Ibody, i = 3.0 kg•m2  Ibody, f = 2.2 kg•m2

 mdumbbell = 5.0 kg each

 Rdumbbell, i = 1.0 m  Rdumbbell, f = 0.20 m

 𝜔i = 1 rev in 2 s = 2p/2 rad/s = p rad/s

Find: (a) 𝜔f  (b) compare Kf with Ki

Solution: (a) for 𝜔f

 Total initial moment of inertia

  Itotal,i = Ibody, i + 2Idumbbell,i = (3.0 kg•m2) + 2[mdumbbell(Rdumbbell, i)
2] = 13 kg•m2

 

 Total final moment of inertia

  Itotal,f = Ibody, f + 2Idumbbell,f = (2.2 kg•m2) + 2[mdumbbell(Rdumbbell, f)
2] = 2.6 kg•m2

 Apply the conservation of angular momentum  Itotal,i 𝜔i = Itotal,f 𝜔f
 

 so that  𝜔f  = Itotal,i 𝜔i/Itotal,f = 5.0p rad/s = 2.5 rev/s
 

 (b) compare Kf with Ki
 

 Ki = (1/2)Itotal,i 𝜔i 
2 = 64 J   Kf = (1/2)Itotal,f 𝜔f 

2 = 320 J
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A spinning figure skater pulls 

his arms in as he rotates on the 

ice. As he pulls his arms in, 

what happens to his angular 

momentum L and kinetic 

energy K?

A. L and K both increase.

B. L stays the same; K increases. 

C. L increases; K stays the same.

D. L and K both stay the same.

E. None of the above.

Q10.12



10.6 Equilibrium of a Rigid 

Body 

The equilibrium of a point particle is determined by the conditions of

               σ 𝐹𝑥 = 0 and σ 𝐹𝑦 = 0.

The Equilibrium of a Rigid Body

For the equilibrium of a rigid body, both its linear motion and rotational motion must 

be considered. Therefore, in addition to  

   σ 𝐹𝑥 = 0 and σ 𝐹𝑦 = 0,

We must add another condition regarding its rotational motion

    σ 𝜏 = 0.

This third condition can be set up about any chosen axis.



Strategy for Solving Rigid Body Equilibrium Problems

General principle: The net force must be zero.

   The net torque about any axis must be zero.

● Draw a diagram according to the physical situation.

● Analyze all the forces acting on each part of a rigid body.

● Sketch all the relevant forces acting on the rigid body.

● Based on the force analysis, set up a most convenient x-y coordinate system.

● Break each force into components using this coordinates.

● Sum up all the x-components of the forces to an equation: σ 𝐹𝑥 = 0.

● Sum up all the y-components of the forces to an equation: σ 𝐹𝑦 = 0.

● Based on the force analysis, set up a most convenient rotational axis.

● Calculate the torque by each force about this rotational axis.

● Sum up all the torques by the forces to an equation: σ 𝜏 = 0.

● Use the above three equations to solve for unknown quantities.



A New Equilibrium Condition – Figure 10.24

• Now, in addition to                        , we also must 

add 
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Balancing on a Teeter-Totter – Figure 10.26
• The heavier child must sit closer to balance the torque from the smaller child.

Your torque is 𝜏𝑦𝑜𝑢 = + 90 𝑘𝑔 𝑔𝑥

Your friend is 3.0 m − 𝑥 from the pivot, and her torque is: 𝜏𝑓𝑟𝑖𝑒𝑛𝑑 = − 60 𝑘𝑔 × 𝑔 3.0 m − 𝑥 . 

For equilibrium, Σ𝜏 = 0.

            𝜏𝑦𝑜𝑢 + 𝜏𝑓𝑟𝑖𝑒𝑛𝑑 = 0

 + 90 kg 𝑔𝑥 − 60 kg 𝑔 3.0 m − 𝑥 = 0

      𝒙 = 𝟏. 𝟐 𝐦

© 2016 Pearson Education, Inc.



Walking the plank

In equilibrium board does not tilt



b)



A fishy wind chime



Example 10.12

Climbing a ladder (length is 5 

m)

Find:

(a) Normal and friction forces

      at the base of the ladder 

(b) Minimum ms at the base

(c) Magnitude and direction of

      the contact force at the base

Solution: (a) σ 𝐹𝑥 = 0  fs – n1 = 0

  σ 𝐹𝑦 = 0  n2 – (800 N) – (180 N) = 0  n2 = 980 N 

  σ 𝜏 = 0  n1(4.0 m) – (180 N)(1.5 m) – (800 N)(1.0 m) = 0

     n1 = 268 N

     fs = 268 N

    (b) Minimum ms = (268 N)/(980 N) = 0.27

    (c) 𝐹𝐵 = (268 𝑁)2+(980 𝑁)2= 1020 𝑁 𝜃 = 𝑡𝑎𝑛−1 980 𝑁

268 𝑁
= 75°



Balanced Forces 

During 

Exercise

© 2016 Pearson Education, Inc.

Refer to the 

worked example 

on page 308.
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Atwood’s machine problem 10.58



Atwood’s machine problem 10.58

© 2016 Pearson Education, Inc.

10.58.  Set Up:  A accelerates downward, B accelerates upward and the wheel turns clockwise. Apply 
y yF ma =  to 

blocks A and B. Let y+  be downward for A and y be upward for B. Apply I  =  to the wheel, with the clockwise 

sense of rotation positive. Each block has the same magnitude of acceleration, a, and a R=   Call the tension in the 

cord between C and AAT  and the tension between C and BB T   

Solve:  For A, 
y yF ma =  gives A A Am g T m a− =   For B, 

y yF ma =  gives B B BT m g m a− =   For the wheel, 

( / )A BT R T R I I a R w− = =  and 
2A B

I
T T a

R

 
− =  

 
 Adding these three equations gives  

2
( )A B A B

I
m m g m m a

R

 
− = + + 

 
 

2 2

2 2

4 00 kg 2 00 kg
(9 80 m/s ) 0 730 m/s

/ 4 00 kg 2 00 kg (0 300 kg)/(0 120 m)

A B

A B

m m
a g

m m I R

   −  − 
= =  =    

+ +  +  +    
2

20 730 m/s
6 08 rad/s

0 120 m

a

R



= = = 


 

2 2( ) (4 00 kg)(9 80 m/s 0 730 m/s ) 36 3 NA AT m g a= − =   −  =   

2 2( ) (2 00 kg)(9 80 m/s 0 730 m/s ) 21 1 NB BT m g a= + =   +  =   

Reflect:  The tensions must be different in order to produce a torque that accelerates the wheel when the blocks accelerate. 



A simple Hinge problem 10.56

© 2016 Pearson Education, Inc.

10.56.  Set Up:  Apply 0 =  to the beam. Denote the length of the beam as .l  The free-body diagram of the beam 

is shown below. Consider the torques about the point where the beam joins the wall. 

 

Solve:  (a) 0 =  gives cos30 sin30 0.
2

mg T −  =
l

l  If the maximum permissible tension is T = 1000 N, the 

maximum mass of the beam is 
( ) 2

2

2 1000 N2
tan30 tan30 1.8 10 kg

9.8 m/s

T
m

g
=  =  =   

Reflect:  Note that the length of the beam does not enter into the calculation. 



Hanging a farm gate



Carrying a box up the stairs

F



How a car’s clutch work

The clutch disk and the gear disk is 

pushed into each other by two forces 

that do not impart any torque, what is the 

final angular velocity when they come 

together?

 

Lz−before = Lz−after

IAwA + IBwB = (IA + IB )w final

 w final =
IAwA + IBwB

(IA + IB )



Problem 10. 66

. What is the original kinetic energy Ki of disk A?

𝐼𝐴 =
1

3
𝐼𝐵  → 𝐼𝐵 = 3𝐼𝐴

Initially;

  𝐿𝑖 = 𝑤𝑜𝐼𝐴 and 𝐾𝑖 =
1

2
𝐼𝐴𝑤𝑜

2

Final;

 𝐼 = 𝐼𝐴 + 3𝐼𝐴 = 4𝐼𝐴 (after coupling together)

Conservation of angular momentum;

𝐿𝑖 = 𝑤𝑜𝐼𝐴 = 𝐿𝑓 = 𝑊𝐼 = 𝑊4𝐼𝐴  → 𝑊 =
𝑤𝑜

4
Final Kinetic energy;

𝐾𝑓 =
1

2
𝐼𝑊2 =

4

2
𝐼𝐴

𝑤𝑜
2

42 =
1

4
𝐾𝑖

 ∴ ∆𝐾 = 𝐾𝑓 − 𝐾𝑖 = −
3

4
𝐾𝑖 = −2400 𝐽 (thermal energy developed during coupling)

So, original energy;

𝐾𝑖 = −
3

4
−2400 = 3200 𝐽

Disk A and B are connected or disconnected by 

clutch C. Disk A is made from a lighter material



0.52 m 

m = 50 kg

ω0 = 850 rev/min

FN = 160 N

If the grindstone comes to a complete stop after 7.5s, what was the 
coefficient of kinetic friction between the axe and the stone? (Assume 
negligible friction in the rest of the system)



R =  0.4 m

m = 0.010 kg
v = 500 m/s

0.2 m

A bullet is shot into a solid disk of wood at rest as shown. It embeds itself in 
the disk, a distance of ½ R above the disk’s center. What will the resulting 
angular velocity of the disk?
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Angular Quantities Are Vectors – 

Figure 10.29

• The “right-hand rule” gives us a vector’s direction.



Vector nature of angular quantities
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Gyroscopes Can Add Stability Figure 10.32

• The gyroscopic motion 

adds stability to bicycles, 

footballs, bullets and 

more.
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A Laboratory Gyroscope – Figure 10.33

• Refer to the worked example on page 309.



Honda 600RR

Who races this bike?

Why can anybody race it, if he just 

dares to go fast?

The oval track of a

World Speedway allows speeds

of 250 mph. 

https://drive.google.com/file/d/1SZzKsN5be6u3Efbu8ii93si5JWg7EWJb/view?usp=sharing


A  non rotating and rotating gyroscope



𝐿 = 𝐼 𝜔

σ Ԧ𝜏 =
Δ𝐿

Δ𝑡
    Analogous to σ Ԧ𝐹 =

Δ𝑃

Δ𝑡
 

Δ𝐿 = ෍ Ԧ𝜏 Δ𝑡

Δ𝜙 =
Δ𝐿

𝐿

Ω =
Δ𝜙

Δ𝑡
=

Δ𝐿

𝐿

Δ𝑡
=

𝜏

𝐿
=

𝑊𝑟

𝐼𝜔
   rad/s

𝑊 is the weight of the flywheel, and 𝑟 is the distance from the pivot point of the 

center of mass of the flywheel.

Precesion Angular Velocity Ω

Ω is the rate
Δ𝜙

Δ𝑡
at which the axis moves





Faster than Gravity
A small marble is placed on the tee at 
the very top of the raised end. A few 
inches below it is a plastic cup. The 
wooden board is held up by a wooden 
ruler. The ruler is quickly removed, 
allowing the board and the marble to 
fall due to the force of gravity. The 
center of percussion of the board is 
the point that has the acceleration of 
a free falling particle along the path 
that it follows, all points beyond the 
center of percussion descend with 
accelerations greater than they would 
have if they were particles moving 
freely on their respective paths. This 
is due to the board rotating about a 
hinged end. Thus, the cup falls at a 
faster rate than the marble, and the 
marble lands in the cup.



Scalar product     

Vector product 

Vector Multiplication

cos

sin

x x y y z zA B AB A B A B A B

A B AB C

q

q

 = = + +

 = =

kBABAjBABAiBABA

BBB

AAA

kji

BA xyyxzxxzyzzy

zyx

zyx






)()()( −+−+−=

















=

Magnitude C must 

be multiplied with a 

unit vector 

perpendicular to A 

and B
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