Chapter 10 Dynamics of Rotational Motion

3 word dictionary

Concepts of rotational motion
Acceleration $\overrightarrow{\boldsymbol{a}} \rightarrow$ angular acceleration $\vec{\propto}$
Distance $\boldsymbol{d} \rightarrow$ angle $\boldsymbol{\theta}$
Velocity $\overrightarrow{\boldsymbol{v}} \rightarrow$ angular velocity $\overrightarrow{\boldsymbol{w}}$

Angle $\boldsymbol{\theta}$

How many degrees are in one radian ? (rad is the unit if choice for rotational motion)

$$
\begin{gathered}
\theta=\frac{S}{r} \rightarrow \text { ratio of two lengths (dimensionless) } \\
\frac{S}{r}=\frac{2 \pi r}{r}=2 \pi \text { rad } \cong 360^{\circ} \\
1 \mathrm{rad} \cong \frac{360^{\circ}}{2 \pi}=\frac{360^{\circ}}{6.28}=57^{\circ} \therefore \text { Factors of unity } \frac{1 \mathrm{rad}}{57^{\circ}} \text { or } \frac{57^{\circ}}{1 \mathrm{rad}}
\end{gathered}
$$

1 radian is the angle subtended at the center of a circle by an arc with length equal to the radius.

Angular velocity $\overrightarrow{\boldsymbol{w}}$

$$
w_{a v}=\frac{\theta_{2}-\theta_{1}}{t_{2}-t_{1}}=\frac{\Delta \theta}{\Delta t}\left[\frac{r a d}{s}\right] \rightarrow w=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}\left[\frac{r a d}{s}\right]
$$

Other units are;

$$
1 \frac{\mathrm{rev}}{\mathrm{~s}}=\frac{2 \pi \mathrm{rad}}{\mathrm{~s}} \quad \therefore 1 \frac{\mathrm{rev}}{\mathrm{~min}}=1 \mathrm{rpm}=\frac{2 \pi}{60} \frac{\mathrm{rad}}{\mathrm{~s}}
$$

(a)

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

Angular acceleration $\vec{\alpha}$

$$
\propto_{a v}=\frac{w_{2}-w_{1}}{t_{2}-t_{1}}=\frac{\Delta w}{\Delta t}\left[\frac{r a d}{s^{2}}\right] \rightarrow \propto=\lim _{\Delta t \rightarrow 0} \frac{\Delta w}{\Delta t}\left[\frac{r a d}{s^{2}}\right]
$$

Relationship between linear and angular quantities

$$
\text { Chapter } 10 \quad \text { Dynamics of Rotational Motion }
$$

- To understand the concept of torque.
- To relate angular acceleration and torque.
- To work and power in rotational motion.
- To understand angular momentum.
- To understand the conservation of angular momentum.
- To study how torques add a new variable to equilibrium.
- To see the vector nature of angular quantities.

Ultimate goal is to derive a rotational

Rotational Dynamics: I

$\boldsymbol{F}=\boldsymbol{m} \boldsymbol{a}=\boldsymbol{m}(\boldsymbol{R} \alpha) \rightarrow \tau$ (torque) $=\boldsymbol{F} \cdot \boldsymbol{R}=\left(\boldsymbol{m} \boldsymbol{R}^{2}\right) \alpha$
(a) $\therefore I=m R^{2}$
(moment of inertia
for single particle)

(b) $\therefore I=\sum m_{i} R_{i}{ }^{2}$
(moment of inertia
for a group of particles)

What is torque? When you apply a force to rotate an object about a pivot or an axis, the effectiveness of your action depends not only on the magnitude of the force you apply, but also on a quantity known as the moment arm.

What is the moment arm? It is the perpendicular distance from the pivot or the axis to the line of action of the applied force.
Torque $=($ Magnitude of Force $) \times($ Moment Arm $)$
$\tau=F l$
Units: $\mathrm{N} \cdot \mathrm{m}$

Torque is a Vector

The Magnitude and the Direction of a Torque Using the examples in the figure on the right:
(a) Torque by \vec{F}_{1}

$$
\begin{aligned}
& \tau_{1}=F_{1} l_{1} \\
& \text { counter-clockwise, positive }
\end{aligned}
$$

(b) Torque by \vec{F}_{2}

$$
\tau_{2}=-F_{2} l_{2}
$$

clockwise, negative
(c) Torque by \vec{F}_{3}

$$
\tau_{3}=F_{3} l_{3}=0
$$

$\overrightarrow{\boldsymbol{F}}_{1}$ tends to cause counterclockwise rotation about point O, so its torque is positive:
$\tau_{1}=+F_{1} l_{1}$

The line of action of $\overrightarrow{\boldsymbol{F}}_{3}$ passes through point O, so the moment arm and hence the torque are zero.
$\overrightarrow{\boldsymbol{F}}_{2}$ tends to cause clockwise rotation about point O, so its torque is negative: $\tau_{2}=-F_{2} l_{2}$

10.2 Torque and Angular Acceleration

Total force on particle A
Again, cut the rigid body into many small pieces, A, $\mathrm{B}, \mathrm{C}, \ldots$. The force acting on piece A is \vec{F}_{A}.
Consider the motion of piece (particle) A. According to Newton's Second Law,

$$
\begin{aligned}
& F_{A, \text { tan }}=m_{A} a_{A, \text { tan }}=m_{A} r_{A} \alpha \\
& \tau_{A}=r_{A} F_{A, t a n}=m_{A} r_{A}^{2} \alpha
\end{aligned}
$$

Sum over the torques for all the pieces:
$\tau_{A}+\tau_{B}+\tau_{C} \ldots=m_{A} r_{A}^{2} \alpha+m_{B} r_{B}^{2} \alpha+m_{C} r_{C}^{2} \alpha+\cdots$

$$
=\left(m_{A} r_{A}^{2}+m_{B} r_{B}^{2}+m_{C} r_{C}^{2}+\cdots\right) \alpha
$$

or

$$
\sum \tau=I \alpha
$$

This is also known as Newton's Second Law for rotational motion.

Path of particle A as body rotates

Torque $\vec{\tau}=\vec{r} \times \vec{F}$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.
Note: $\mathrm{F}(\mathrm{rad})$ has no torque with respect to O

A Plumbing Problem to Solve - Example 10.1

(a) Diagram of situation

(b) Free-body diagram

The angle between r and F is $\phi=109^{\circ}$
$l=0.80 \sin 71^{\circ}=0.76 \mathrm{~m}$
$\tau=F l=900 \mathrm{~N} \cdot(0.76)=680 \mathrm{Nm}$ (magnitude)

James finds it difficult to muster enough torque to turn the stubborn bolt with the wrench. He wishes he had a pipe handy to effectively lengthen the wrench handle, but doesn't. He does, however, have a piece of rope. Will torque be increased if he pulls as hard on the rope as shown?

Note: $\tau=\boldsymbol{F} \boldsymbol{R} \sin \theta$

Note: sign of τ

$$
\begin{aligned}
\tau_{1} & =\boldsymbol{F}_{\mathbf{1}}\left(\boldsymbol{R}_{\mathbf{1}} \sin \mathbf{9 0 ^ { \circ }}\right) \\
& =(\mathbf{5 0 . 0} \mathbf{N})(\mathbf{0 . 3 0 0} \mathbf{~ m})=\mathbf{1 5 . 0} \mathbf{N} \cdot \mathbf{m} \\
\tau_{2} & =\boldsymbol{F}_{\mathbf{2}}\left(\boldsymbol{R}_{\mathbf{2}} \sin \mathbf{6 0} 0^{\circ}\right) \\
& =(\mathbf{5 0 . 0} \mathbf{N})(\mathbf{0 . 5 0 0} \mathbf{~ m})(\mathbf{0 . 8 6 6}) \\
& =\mathbf{2 1 . 7} \mathbf{N} \cdot \mathbf{m} \\
\tau_{\text {net }} & =\tau_{1}(\mathrm{c} . \mathrm{c} . \mathrm{w})+\tau_{2}(\mathrm{c} . \mathrm{w} .) \\
& =\tau_{1}(+1)+\tau_{2}(-1) \\
& =(15.0 \mathrm{~N} \cdot \mathrm{~m})-(21.7 \mathrm{~N} \cdot \mathrm{~m}) \\
& =-6.7 \mathrm{~N} \cdot \mathrm{~m} \rightarrow 6.7 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{c} . \mathrm{w} .) \\
& \quad \mathrm{R}_{1}=0.300 \mathrm{~m} \quad \mathrm{R}_{2}=0.500 \mathrm{~m}
\end{aligned}
$$

Clicker question

Torques on a Rod The 3 forces have equal magnitude

- a) $\tau_{1}>\tau_{2}>\tau_{3}$
-b) $\tau_{1}>\tau_{3}>\tau_{2}$
- c) $\tau_{2}>\tau_{3}>\tau_{1}$

A rod is pivoted at its center. Three forces of equal magnitude are applied as shown. Which of the following statements correctly describe the order in the magnitudes of the torques by these three forces with respect to the pivot?
$\overrightarrow{\boldsymbol{F}}_{2}$
$\overrightarrow{\boldsymbol{F}}_{3}$

Problem 10.1: Calculate the torque about point \mathbf{O} due to the force $\overrightarrow{\boldsymbol{F}}$ for each situation shown. The rod has a length $\mathbf{4 m}$ and the force a magnitude of $\mathbf{1 0 N}$

Let counterclockwise torques be positive $\tau=F \cdot l=$ $F \cdot r \sin \varphi$

a) $\tau=+10 \mathrm{~N} \cdot(4 \mathrm{~m}) \sin 90^{\circ}=40 \mathrm{Nm}(c c=+)$
(a)
(b)

(c)
(d)

(e)
(f)

$$
\begin{aligned}
& \tau=F \cdot l=F \cdot r \sin \varphi \\
& \tau_{1}=-F_{1} \cdot l_{1}=-8 N \cdot 5 m=-40 N m \\
& \tau_{2}=F_{2} \cdot l_{2}=12 N \cdot 2 m \sin 30^{\circ}=+12 N m \\
& \quad \sum \tau_{i}=\tau_{1}+\tau_{2}=-28 N m(c w=-)
\end{aligned}
$$

In order not to fall the acrobat keeps the her center of gravity directly above the rope. She creates proper torques in this balancing act. Why Do Acrobats Carry Long Bars?

Clicker Question

Rotating Cylinders

Relationship of torque and angular acceleration

$$
\Sigma \tau=I \alpha \text { rotational analog of Newton's law } \Sigma F=m a
$$

Which choice correctly ranks the magnitudes of the angular accelerations of the three cylinders?
A. $\alpha_{3}>\alpha_{2}>\alpha_{1}$
B. $\alpha_{1}>\alpha_{2}>\alpha_{3}$
C. $\alpha_{2}>\alpha_{1}>\alpha_{3}$
D. $\alpha_{1}=\alpha_{2}=\alpha_{3}$

Finding the moment of inertia for common shapes

(a) Slender rod, axis through center

$$
I=\frac{1}{12} M L^{2}
$$

(b) Slender rod, axis through one end

$$
I=\frac{1}{3} M L^{2}
$$

(c) Rectangular plate, axis through center

$$
I=\frac{1}{12} M\left(a^{2}+b^{2}\right)
$$

(d) Thin rectangular plate, axis along edge

$$
I=\frac{1}{3} M a^{2}
$$

(e) Hollow cylinder

$$
I=\frac{1}{2} M\left(R_{1}^{2}+R_{2}^{2}\right)
$$

(f) Solid cylinder
$I=\frac{1}{2} M R^{2}$

(g) Thin-walled hollow cylinder

$$
I=M R^{2}
$$

(h) Solid sphere

$$
I=\frac{2}{5} M R^{2}
$$

(i) Thin-walled hollow sphere

$$
I=\frac{2}{3} M R^{2}
$$

> Re-visit an Earlier Problem

Example 10.2
A cable unwinding from a winch.
Find:
(a) Magnitude of the angular acceleration
(b) Final angular velocity
(c) Final speed of cable

Solution:
The torque by the tension force

$$
\tau=F l=(9.0 \mathrm{~N}) \times(0.06 \mathrm{~m})=0.54 \mathrm{~N} \cdot \mathrm{~m} .
$$

The moment of inertia about the given axis $I=\frac{1}{2} M R^{2}=\frac{1}{2}(50 \mathrm{~kg})(0.06 \mathrm{~m})^{2}=0.090 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Therefore, the angular acceleration

$$
\begin{aligned}
& \alpha=\tau / I=(0.54 \mathrm{~N} \cdot \mathrm{~m}) /\left(0.090 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)=6.0 \mathrm{rad} / \mathrm{s}^{2} \\
& \theta-\theta_{0}=\mathrm{s} / \mathrm{r}=(2.0 \mathrm{~m}) /(0.06 \mathrm{~m})=33 \mathrm{rad}
\end{aligned}
$$

Angular Displacement
Final angular velocity
Final speed of cable

$$
\begin{aligned}
& \omega=\sqrt{\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)}=\sqrt{2 \alpha\left(\theta-\theta_{0}\right)}=20 \mathrm{rad} / \mathrm{s} \\
& v=r \omega=(0.06 \mathrm{~m})(20 \mathrm{rad} / \mathrm{s})=1.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example $10.3 \quad$ Given: M, R, m, and h
Find: (a) α for winch, a for bucket, and tension force.
(b) v for the bucket just before hitting the water
(c) ω for the winch just before hitting the water

Solution:
Linear motion of the bucket $m g-T=m a$
Rotational motion of the winch

$$
\tau=I \alpha \quad \text { or } \quad T R=\left(\frac{1}{2} M R^{2}\right) \alpha
$$

From (2): $\quad T=\frac{1}{2} M R \alpha=\frac{1}{2} M a$
Substitute (3) into (1): $\quad m g-\frac{1}{2} M a=m a$
Linear acceleration: $\quad a=m g /(m+M / 2)=g /(1+M / 2 m)$
Tension force $\quad T=M a / 2=M g /(2+M / m)$
Angular acceleration: $\alpha=a / R=g /[R(1+M / 2 m)$
Final v and ω calculated using the kinematic equations:

$$
v=\sqrt{\frac{2 g h}{1+M / 2 m}} \quad \text { and } \quad \omega=\frac{1}{R} \sqrt{\frac{2 g h}{1+M / 2 m}}
$$

Re-visit One more Problem

Example 10.4 Given: Given M, R, and h
Find: (a) Center of mass acceleration and angular acceleration
(b) Tension force
(c) Velocity of the center of mass v_{cm}

Solution:
Apply Newton's Second Law for linear motion

$$
\begin{equation*}
M g-T=M a \tag{1}
\end{equation*}
$$

Apply Newton's Second Law for rotational motion

$$
\begin{equation*}
\tau=I \alpha \quad \text { or } \quad T R=\left(\frac{1}{2} M R^{2}\right) \alpha \tag{2}
\end{equation*}
$$

From (2): $\quad T=\frac{1}{2} M R \alpha=\frac{1}{2} M a$
Substitute (3) into (1):

$$
M g-\frac{1}{2} M a=M a
$$

Linear acceleration:
Angular acceleration:

$$
a=2 g / 3
$$

$$
\alpha=a / R=2 g / 3 R
$$

Tension force
Final $v_{\text {a }}$ us $=M g$
Final v_{cm} using the kinematic equations

$$
v_{\mathrm{cm}}=\sqrt{2 a h}=\sqrt{4 g h / 3}
$$

Example 10.5 on page 291: Rolling without slipping What is the acceleration of a rolling bowling ball?

Given: Given M, R, and β
Find: (a) a_{cm} and α (also, f_{s}, required minimum μ_{s})
Solution:
Apply Newton's Second Law for linear motion

$$
\begin{equation*}
M g \sin \beta-f_{\mathrm{s}}=M a_{\mathrm{cm}} \tag{1}
\end{equation*}
$$

Apply Newton's Second Law for rotational motion

$$
\begin{equation*}
\tau=I \alpha \quad \text { or } \quad f_{\mathrm{s}} R=\left(\frac{2}{5} M R^{2}\right) \alpha \tag{2}
\end{equation*}
$$

From (2): $\quad f_{\mathrm{s}}=\frac{2}{5} M R \alpha=\frac{2}{5} M a_{\mathrm{cm}}$
Substitute (3) into (1): $\quad M g \sin \beta-\frac{2}{5} M a_{\mathrm{cm}}=M a_{\mathrm{cm}}$
Linear acceleration: $\quad a_{\mathrm{cm}}=\frac{5}{7} g \sin \beta$
Angular acceleration:

$$
\alpha=\frac{a_{\mathrm{cm}}^{\prime}}{R}=\frac{5}{7 R} g \sin \beta
$$

Static friction force
$f_{\mathrm{s}}=\frac{2}{5} M R \alpha=\frac{2}{7} M g \sin \beta$

Minimum static coefficient of friction

$$
\begin{aligned}
\mu_{\mathrm{s}} & =f_{\mathrm{s}} / n=\left(\frac{2 M g \sin \beta}{7}\right) / M g \operatorname{con} \beta \\
& =\frac{2}{7} \tan \beta
\end{aligned}
$$

A Bowling Ball Rotates on a Moving Axis - Example 10.5

a. What is the ball's linear acceleration $\mathrm{a}_{\mathrm{cm}, \mathrm{x}}$?
b. What is the friction force f_{s} ? (note: it is static friction = not slipping)

(a)

(b)

Translation: $\Sigma F_{x}=M g \sin \beta-f_{s}$
Rotations: $\Sigma \tau=f_{s} R=I_{c m} \alpha=\left(\frac{2}{5} M R^{2}\right) \alpha$
$a_{c m, x}=R \alpha \quad f_{s} R=\frac{2}{5} M R^{2}\left(\frac{a_{c m, x}}{R}\right)$
From(1) $M g \sin \beta-\frac{2}{5} M a_{c m, x}=M a_{c m x}$

$$
\begin{align*}
& f_{s}=\frac{2}{5} M \mathrm{a}_{\mathrm{cm}, \mathrm{x}} \tag{2}\\
& a_{c m, x}=\frac{5}{7} g \sin \beta
\end{align*}
$$

Clicker question

A solid bowling ball rolls down a ramp. Which of the following forces exerts a torque on the bowling ball about its center?

A. the weight of the ball
B. the normal force exerted by the ramp
C. the friction force exerted by the ramp
D. more than one of the above
E. depends on whether the ball rolls without slipping

10.3 Work and Power in Rotational Motion

Again, cut the rigid body into many small pieces, A, B, C, \ldots. The force acting on piece A is \vec{F}_{A}.
If the angular position of A changes by $\Delta \theta$, the work done by a constant force \vec{F}_{A} acting on A is:

$$
W_{A}=F_{A, \tan }(R \Delta \theta)=\tau_{A} \Delta \theta
$$

Sum over contributions from all the pieces, the total work

$$
W=\tau \Delta \theta=\tau\left(\theta_{2}-\theta_{1}\right)
$$

A few notes: (a) Applicable for constant torque τ.
(b) Work has units $\mathrm{N} \cdot \mathrm{m}$.

Power is the rate at which work is done:

$$
P=\frac{\Delta W}{\Delta t}=\tau \frac{\Delta \theta}{\Delta t}=\tau \omega
$$

(Compare with linear motion in which case $P=F v$)

Total force on particle A
Tangential component:
Only this component
contributes to torque.

Path of particle A as body rotates

Work and power in rotational motion
J
 tangential force
(a)

(b)

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

it the torque $\overline{5}=$ const while the object rotates

$$
\Delta \theta=\left(\theta_{2}-\theta_{1}\right)
$$

10.4 Angular Momentum

In Chapter 8 we defined the momentum of a particle as $\vec{p}=m \vec{v}$, we could state Newton's Second Law as $\vec{F}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{p}}{\Delta t}$.

Here we define the angular momentum of a rigid body:

$$
L=I \omega
$$

Notes: It is also a vector, same as ω. Units: $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$

Angular momentum of a point particle:

$$
L=m v l \quad\left(\mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right)
$$

Notes: (a) l is effective the "moment arm"
(b) a particle moving along a straight line can still have an angular momentum about a pivot or rotational axis

Angular momentum $L=r \times p$

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

Example 10.7: A kinetic sculpture
Given: Two small metal sphere of masses $m_{1}=m_{2}=2.0 \mathrm{~kg}$
Uniform metal rod of mass $M=3.0 \mathrm{~kg}$ and length $s=4.0 \mathrm{~m}$
Angular velocity 3.0 rev/minutes about a vertical axis through the middle
Find: Angular momentum and Kinetic energy

Solution:

(a) Angular momentum Total moment of inertia

Angular momentum

$$
\begin{aligned}
I_{\text {total }} & =I_{\text {sphere } 1}+I_{\text {sphere } 2}+I_{\text {rod }}=m_{1}(s / 2)^{2}+m_{2}(s / 2)^{2}+(1 / 12) M s^{2} \\
& =20 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

(b) Kinetic energy
$L=I \omega=\left(20 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(3.0 \cdot 2 \pi / 60 \mathrm{~s}^{-1}\right)=6.2 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$

$$
K=(1 / 2) I \omega^{2}=0.96 \mathrm{~J}
$$

Calculate the angular momentum and kinetic energy of a solid uniform sphere with a radius of 0.12 m and a mass of 14.0 kg if it is rotating at $6.00 \mathrm{rad} / \mathrm{s}$ about an axis through its center

$$
\begin{gathered}
I=\frac{2}{5} M R^{2}=\frac{2}{5} *(14 \mathrm{~kg})(0.12 \mathrm{~m})^{2}=0.0806 \mathrm{kgm}^{2} \\
L=I w=0.0806 \mathrm{kgm}^{2} * 6.0 \mathrm{rad}=0.484 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
K=\frac{1}{2} I w^{2}=\frac{1}{2} L w=\frac{1}{2}\left(0.484 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{s}\right) * 6 \mathrm{rad}=1.45 \mathrm{~J}
\end{gathered}
$$

10.5 Conservation of Angular Momentum

The Relationship Between Torque and Angular Momentum
Since $\quad \sum \tau=I \alpha=I \lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{I \Delta \omega}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta(I \omega)}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta L}{\Delta t}$
We can state Newton's Second Law for rotational motion as

$$
\sum \tau=\lim _{\Delta t \rightarrow 0} \frac{\Delta L}{\Delta t}
$$

Conservation of Angular Momentum
If
$\sum \tau=0$,
Then
$L=$ constant

Angular Momentum Is Conserved Figure 10.19

- The first figure shows the figure skater with a large moment of inertia.
- In the second figure, she has made the moment much smaller by bringing her arms in.
- Since L is constant, ω must increase.

Conservation of angular momentum

Example 10.9:
Given: $I_{\mathrm{body}, \mathrm{i}}=3.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad I_{\mathrm{body}, \mathrm{f}}=2.2 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$m_{\text {dumbbell }}=5.0 \mathrm{~kg}$ each
$R_{\text {dumbeell, } \mathrm{i}}=1.0 \mathrm{~m} \quad R_{\text {dumbbell, } \mathrm{f}}=0.20 \mathrm{~m}$ $\omega_{\mathrm{i}}=1 \mathrm{rev}$ in $2 \mathrm{~s}=2 \pi / 2 \mathrm{rad} / \mathrm{s}=\pi \mathrm{rad} / \mathrm{s}$
Find: (a) ω_{f}
(b) compare K_{f} with K_{i}

Solution: (a) for ω_{f}

BEFORE

AFTER

Total initial moment of inertia

$$
I_{\text {total, }, \mathrm{i}}=I_{\mathrm{body}, \mathrm{i}}+2 I_{\mathrm{dumbbell}, \mathrm{i}}=\left(3.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)+2\left[m_{\text {dumbbell }}\left(R_{\text {dumbbell, } \mathrm{i}}\right)^{2}\right]=13 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

Total final moment of inertia

$$
I_{\text {total, }, \mathrm{f}}=I_{\mathrm{body}, \mathrm{f}}+2 I_{\text {dumbbell,f }}=\left(2.2 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)+2\left[m_{\text {dumbbell }}\left(R_{\text {dumbbell, } \mathrm{f}}\right)^{2}\right]=2.6 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

Apply the conservation of angular momentum

$$
I_{\text {total, }, \mathrm{i}} \omega_{\mathrm{i}}=I_{\text {total, }, \mathrm{f}} \omega_{\mathrm{f}}
$$

so that

$$
\omega_{\mathrm{f}}=I_{\text {total, }, \mathrm{i}} \omega_{\mathrm{i}} / I_{\text {total, }, \mathrm{f}}=5.0 \pi \mathrm{rad} / \mathrm{s}=2.5 \mathrm{rev} / \mathrm{s}
$$

(b) compare K_{f} with K_{i}

$$
K_{\mathrm{i}}=(1 / 2) I_{\text {total, }, \mathrm{i}} \omega_{\mathrm{i}}^{2}=64 \mathrm{~J} \quad K_{\mathrm{f}}=(1 / 2) I_{\text {total, } \mathrm{f}} \omega_{\mathrm{f}}^{2}=320 \mathrm{~J}
$$

Q10.12

A spinning figure skater pulls his arms in as he rotates on the ice. As he pulls his arms in, what happens to his angular momentum L and kinetic energy K ?
A. L and K both increase.

B. L stays the same; K increases.
C. L increases; K stays the same.
D. L and K both stay the same.
E. None of the above.

$$
\begin{aligned}
& \text { 10.6 Equilibrium of a Rigid } \\
& \text { Body }
\end{aligned}
$$

The equilibrium of a point particle is determined by the conditions of

$$
\sum F_{x}=0 \quad \text { and } \quad \sum F_{y}=0
$$

The Equilibrium of a Rigid Body

For the equilibrium of a rigid body, both its linear motion and rotational motion must be considered. Therefore, in addition to

$$
\sum F_{x}=0 \quad \text { and } \quad \sum F_{y}=0
$$

We must add another condition regarding its rotational motion

$$
\sum \tau=0
$$

This third condition can be set up about any chosen axis.

Strategy for Solving Rigid Body Equilibrium Problems

General principle: The net force must be zero.
The net torque about any axis must be zero.

- Draw a diagram according to the physical situation.
- Analyze all the forces acting on each part of a rigid body.
- Sketch all the relevant forces acting on the rigid body.
- Based on the force analysis, set up a most convenient $x-y$ coordinate system.
- Break each force into components using this coordinates.
- Sum up all the x-components of the forces to an equation: $\sum F_{x}=0$.
- Sum up all the y-components of the forces to an equation: $\sum F_{y}=0$.
- Based on the force analysis, set up a most convenient rotational axis.
- Calculate the torque by each force about this rotational axis.
- Sum up all the torques by the forces to an equation: $\sum \tau=0$.
- Use the above three equations to solve for unknown quantities.

A New Equilibrium Condition - Figure 10.24

- Now, in addition to $\Sigma F_{x}=0$ and $\Sigma F_{y}=0$, we also must add $\Sigma \tau=0$.

Where do you place the string so that this cutout will hang horizontally?

1. Hold the cutout by any point on its edge and allow it to hang freely. A vertical line drawn from your hand passes through the center of gravity.

2. Repeat the process, holding the cutout at a different point. The
spot where your two lines cross is the center of

When suspended from the center of gravity, the cutout hangs level.

CONCEPTUAL ANALYSIS 10.5

Blocks in equilibrium

Three rectangular blocks rest on a horizontal sheet of ice. The blocks are free to both slide along the ice and rotate about their centers of mass as they slide. Figure 10.25 shows how one or more forces, all with a magnitude of F, act along the short end of each block. Which block is in equilibrium?
A. Block 1
B. Block 2
C. Block 3
D. None of the blocks is in equilibrium.

SOLUTION To be in equilibrium, both the net force and the net torque must be zero. Because only one force acts at the edge of block 1, neither the net force nor the net torque can be zero. On block 2 , the torques produced by the two forces are in opposite directions, so the net torque

\triangle FIGURE 10.25

is zero. Because both forces point in the same direction, however, the net force acting on block 2 cannot be zero. On block 3 , the forces point in opposite directions, so the net force is zero. But both forces produce a torque in the counterclockwise direction, so the net torque on block 3 cannot be zero. Therefore, none of the blocks is in equilibrium. The correct answer is D.

Balancing on a Teeter-Totter - Figure 10.26

- The heavier child must sit closer to balance the torque from the smaller child. Your torque is $\tau_{\text {you }}=+(90 \mathrm{~kg}) \mathrm{gx}$
Your friend is $3.0 \mathrm{~m}-x$ from the pivot, and her torque is: $\tau_{\text {friend }}=-(60 \mathrm{~kg}) \times g(3.0 \mathrm{~m}-x)$.
For equilibrium, $\Sigma \tau=0$.

$$
\begin{aligned}
\tau_{\text {you }}+\tau_{\text {friend }} & =0 \\
+(90 \mathrm{~kg}) g x-(60 \mathrm{~kg}) g(3.0 \mathrm{~m}-x) & =0 \\
\boldsymbol{x} & =\mathbf{1 . 2 ~ m}
\end{aligned}
$$

(a) Sketch of physical situation

(b) Free-body diagram

Walking the plank

In equilibrium board does not tilt

Given; $L=6 m, D=15 m, M=90 \mathrm{~kg}$
How heavy is Mr.Throckmorton?

Copyight © 2004 Pearson Education, inc. publishing as Addson Westey.

$$
\begin{gathered}
\tau_{\text {throckmorton }}=m\left(\frac{L}{2}-\frac{D}{2}\right) g \\
\tau_{\text {plank }}=M\left(\frac{D}{2}\right) g \\
\sum \tau_{i}=0 \rightarrow m\left(\frac{L}{2}-\frac{D}{2}\right)=M\left(\frac{D}{2}\right) \\
m(L-D)=M D \rightarrow m=\frac{M * D}{L-D}=\frac{90 * 1.5}{6-1.5}=30 \mathrm{~kg}
\end{gathered}
$$

The broom balances at its center of gravity. If you saw the broom into two parts through the center of gravity, you'll have a "handle part" and a "broom part." If you then weigh each part on a scale, you'll find the part that weighs more will be the
a) handle part.
b) broom part.
c) neither, for both will weigh the same.

A fishy wind chime

What is the counter weight of the mobile shown?

$$
\begin{gathered}
0.4 \\
0=X_{c g}=\frac{\sum m_{i} x_{i}}{\sum m_{i}}=\frac{m(-0.1)+(0.1) \cdot(0.15)+(0.1) \cdot(0.4)}{m+0.1+0.1} \\
m=\frac{(0.1) \cdot(0.15)+(0.1) \cdot(0.4)}{0.1}=0.55 \mathrm{~kg}
\end{gathered}
$$

The center of gravity must be on the suspension point. So that the sum of torques is equal to zero.

Example 10.12

Climbing a ladder (length is 5
m)

Find:
(a) Normal and friction forces at the base of the ladder
(b) Minimum μ_{s} at the base
(c) Magnitude and direction of the contact force at the base
(a)

(b)

(c)

Solution: (a)	$\sum F_{x}=0$	$f_{\mathrm{s}}-n_{1}=0$	
	$\sum F_{y}=0$	$n_{2}-(800 \mathrm{~N})-(180 \mathrm{~N})=0$	$n_{2}=980 \mathrm{~N}$
	$\sum \tau=0$	$n_{1}(4.0 \mathrm{~m})-(180 \mathrm{~N})(1.5 \mathrm{~m})-(800 \mathrm{~N})(1.0 \mathrm{~m})=0$	
		$n_{1}=268 \mathrm{~N}$	
		$f_{\mathrm{s}}=268 \mathrm{~N}$	

(b) Minimum $\quad \mu_{\mathrm{s}}=(268 \mathrm{~N}) /(980 \mathrm{~N})=0.27$
(c) $\quad F_{B}=\sqrt{(268 N)^{2}+(980 N)^{2}}=1020 \mathrm{~N}$

$$
\theta=\tan ^{-1}\left(\frac{980 N}{268 N}\right)=75^{\circ}
$$

Balanced Forces During Exercise

$$
\begin{aligned}
& E_{y}=-\frac{(0.50 \mathrm{~m}-0.1}{0.10} \\
& E_{x}=\frac{(0.50 \mathrm{~m})(50 \mathrm{~N})}{0.57 \mathrm{~m}}=44 \mathrm{~N} .
\end{aligned}
$$

The magnitude of the force at the elbow is

$$
E=\sqrt{E_{x}^{2}+E_{y}^{2}}=200 \mathrm{~N}
$$

As we mentioned earlier, we have not explicitly used the first condition for equilibrium-that the vector sum of the forces is zero. To check our answer, we can compute $\sum F_{x}$ and $\sum F_{y}$ to verify that they really are zero. Such checks help verify internal consistency. Checking, we obtain

$$
\begin{aligned}
\Sigma F_{x} & =E_{x}-T_{x}=44 \mathrm{~N}-(250 \mathrm{~N}) \cos 80^{\circ}=0 \\
\Sigma F_{y} & =E_{y}+T_{y}-w \\
& =-200 \mathrm{~N}+(250 \mathrm{~N}) \sin 80^{\circ}-50 \mathrm{~N}=0
\end{aligned}
$$

BEFLECT Notice how much we have simplified these calculations by using a little ingenuity in choosing the point for calculating torques so as to eliminate one or more of the unknown quantities. In the last step, the force T has no torque about point B; thus, when the torques of T_{x} and T_{y} are computed separately, they must add to zero.

Practice Problem: Double the weight of the dumbbell. What is the new tension T in the tendon connected to the biceps muscle at point B ? Answer: 510 N .

We don't know the sign of this component; we draw it positive for convenience.
(b)

Refer to the worked example on page 308 .

Atwood's machine problem 10.58

58. II Atwood's machine. Figure 10.77 illustrates an Atwood's machine. Find the linear accelerations of blocks A and B, the angular acceleration of the wheel C, and the tension in each side of the cord if there is no slipping between the cord and the surface of the wheel. Let the masses of blocks A and B be 4.00 kg and 2.00 kg , respectively, the moment of inertia of the wheel about its axis be $0.300 \mathrm{~kg} \cdot \mathrm{~m}^{2}$, and the radius of the wheel be 0.120 m .

Figure 10.77

Atwood's machine problem 10.58

10.58. Set Up: A accelerates downward, B accelerates upward and the wheel turns clockwise. Apply $\sum F_{y}=m a_{y}$ to blocks A and B. Let $+y$ be downward for A and y be upward for B. Apply $\sum \tau=I \alpha$ to the wheel, with the clockwise sense of rotation positive. Each block has the same magnitude of acceleration, a, and $a=R \alpha$. Call the tension in the cord between C and $A T_{A}$ and the tension between C and $B T_{B}$.
Solve: For $A, \sum F_{y}=m a_{y}$ gives $m_{A} g-T_{A}=m_{A} a$. For $B, \sum F_{y}=m a_{y}$ gives $T_{B}-m_{B} g=m_{B} a$. For the wheel, $T_{A} R-T_{B} R=I \alpha=I(a / R) \quad$ and $T_{A}-T_{B}=\left(\frac{I}{R^{2}}\right) a$. Adding these three equations gives

$$
\begin{gathered}
\left(m_{A}-m_{B}\right) g=\left(m_{A}+m_{B}+\frac{I}{R^{2}}\right) a \\
a=\left(\frac{m_{A}-m_{B}}{m_{A}+m_{B}+I / R^{2}}\right) g=\left(\frac{4.00 \mathrm{~kg}-2.00 \mathrm{~kg}}{4.00 \mathrm{~kg}+2.00 \mathrm{~kg}+(0.300 \mathrm{~kg}) /(0.120 \mathrm{~m})^{2}}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=0.730 \mathrm{~m} / \mathrm{s}^{2} \\
\alpha=\frac{a}{R}=\frac{0.730 \mathrm{~m} / \mathrm{s}^{2}}{0.120 \mathrm{~m}}=6.08 \mathrm{rad} / \mathrm{s}^{2} \\
T_{A}=m_{A}(g-a)=(4.00 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}-0.730 \mathrm{~m} / \mathrm{s}^{2}\right)=36.3 \mathrm{~N} \\
T_{B}=m_{B}(g+a)=(2.00 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}+0.730 \mathrm{~m} / \mathrm{s}^{2}\right)=21.1 \mathrm{~N}
\end{gathered}
$$

Reflect: The tensions must be different in order to produce a torque that accelerates the wheel when the blocks accelerate.

A simple Hinge problem 10.56

56. I One end of a $1.2-\mathrm{m}$-long beam is hinged to a vertical wall, and the other end is held up by a thin wire as shown in Figure 10.75 . The wire will break if its tension exceeds 1000 N. What is the maximum mass that the beam can have and still be supported by the wire?

Figure 10.75

Problem 56ㅁ.
10.56. Set Up: Apply $\sum \tau=0$ to the beam. Denote the length of the beam as 1 . The free-body diagram of the beam is shown below. Consider the torques about the point where the beam joins the wall.

Solve: (a) $\sum \tau=0$ gives $m g \frac{1}{2} \cos 30^{\circ}-T 1 \sin 30^{\circ}=0$. If the maximum permissible tension is $T=1000 \mathrm{~N}$, the maximum mass of the beam is $m=\frac{2 T}{g} \tan 30^{\circ}=\frac{2(1000 \mathrm{~N})}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \tan 30^{\circ}=1.8 \times 10^{2} \mathrm{~kg}$
Reflect: Note that the length of the beam does not enter into the calculation.

Hanging a farm gate

Example 11-61

a)What is the tension in wire CD ?

c) What is combined vertical force on hinges A and B ?

Use coordinates with the origin at B . Let $\overrightarrow{H_{A}}$ and $\overrightarrow{H_{B}}$ exerted by the hinges A and B . The problem states that $\overrightarrow{H_{A}}$ has no horizontal component. Replace the tension \vec{T} by its horizontal and vertical components.
a) $\sum \zeta_{B}=0 \rightarrow+(T \sin 30)(4 m)+(T \cos 30)(2 m)-w(2 m)=0$

$$
T(2 \sin 30+\cos 30)=w \rightarrow T=\frac{w}{(2 \sin 30+\cos 30)}=322 N
$$

b) $\sum F_{x}=m a_{x} \rightarrow H_{B h}-T \cos 30=0 \rightarrow H_{B h}=T \cos 30=(322 N) \cos 30=279 \mathrm{~N}$
c) $\sum F_{y}=m a_{y} \rightarrow H_{a v}+H_{B v}+T \sin 30-w=0$

$$
\rightarrow H_{a v}+H_{B v}=w-T \sin 30=600 N-(322 N) \sin 30=439 N
$$

Carrying a box up the stairs

$$
\begin{gathered}
W=m g=200 * 9.8=1960 \mathrm{~N} \\
\sum \zeta=0 \rightarrow \mathrm{~F}_{\mathrm{A}}(1.25 \mathrm{~m})(\cos 45)-W(0.375 \mathrm{~m})(\cos 45)=0 \\
\rightarrow F_{A}=\frac{0.375}{1.25} W=588 \mathrm{~N} \\
\sum F_{y}=0 \rightarrow F_{A}+F_{B}-W=0 \rightarrow F_{B}=W-F_{A}=(1960-588)=1372 \mathrm{~N}
\end{gathered}
$$

The person B below applies more than twice the force of A

How a car's clutch work

The clutch disk and the gear disk is pushed into each other by two forces that do not impart any torque, what is the final angular velocity when they come together?

$$
\begin{gathered}
L_{z-\text { before }}=L_{z-\text { after }} \\
I_{A} \omega_{A}+I_{B} \omega_{B}=\left(I_{A}+I_{B}\right) \omega_{\text {final }} \\
\Rightarrow \quad \omega_{\text {final }}=\frac{I_{A} \omega_{A}+I_{B} \omega_{B}}{\left(I_{A}+I_{B}\right)}
\end{gathered}
$$

Disk A and B are connected or disconnected by

 clutch C. Disk A is made from a lighter material
Problem 10. 66

. What is the original kinetic energy $\boldsymbol{K}_{\boldsymbol{i}}$ of disk \boldsymbol{A} ?

$$
I_{A}=\frac{1}{3} I_{B} \rightarrow I_{B}=3 I_{A}
$$

Initially;

$$
L_{i}=w_{o} I_{A} \text { and } K_{i}=\frac{1}{2} I_{A} w_{o}^{2}
$$

Final;

$$
I=I_{A}+3 I_{A}=4 I_{A}(\text { after coupling together })
$$

Conservation of angular momentum;

$$
L_{i}=w_{o} I_{A}=L_{f}=W I=W 4 I_{A} \rightarrow W=\frac{w_{o}}{4}
$$

Final Kinetic energy;

$$
\begin{gathered}
K_{f}=\frac{1}{2} I W^{2}=\frac{4}{2} I_{A} \frac{w_{o}^{2}}{4^{2}}=\frac{1}{4} K_{i} \\
\therefore \Delta K=K_{f}-K_{i}=-\frac{3}{4} K_{i}=-2400 J \text { (thermal energy developed during coupling) }
\end{gathered}
$$

So, original energy;

$$
K_{i}=-\frac{3}{4}(-2400)=3200 \mathrm{~J}
$$

$\omega_{0}=850 \mathrm{rev} / \mathrm{min}$

If the grindstone comes to a complete stop after 7.5 s , what was the coefficient of kinetic friction between the axe and the stone? (Assume negligible friction in the rest of the system)
$\mathrm{F}_{\mathrm{N}}=160 \mathrm{~N}$

$$
\begin{aligned}
& \sum r=-f_{k} R \\
& I=\frac{1}{2} m R^{2} \text { (solid disk) } \\
& t=7.50 \mathrm{~s} \\
& \omega=0 \\
& \omega=\omega_{0}+\alpha t \\
& \alpha=\frac{\omega-\omega_{0}}{t}=\frac{0-89.0 \mathrm{rad} / \mathrm{s}}{7.50 \mathrm{~s}}=-11.9 \mathrm{rad} / \mathrm{s}^{2} \\
& \Sigma \tau=I \alpha \\
& -f_{k} R=\frac{1}{2} m R^{2} \alpha \\
& f_{k}=-\frac{1}{2} m R \alpha=-\frac{1}{2}(150 \mathrm{~kg})(0.260 \mathrm{~m})\left(-11.9 \mathrm{rad} / \mathrm{s}^{2}\right) \\
& f_{k}=71.4 \mathrm{~N} \\
& \mu_{k}=\frac{f_{k}}{n}=\frac{77.4 \mathrm{~N}}{160 \mathrm{~N}}=\underline{0.483}
\end{aligned}
$$

$$
\begin{array}{ll}
R=0.260 \mathrm{~m}, m=50.0 \mathrm{~kg} & \text { Use constant angular acceleration kine matic } \\
f_{k}=\mu_{n} n, \eta=160 \mathrm{~N}
\end{array}
$$

$$
\text { Apply } \sum T=I \alpha
$$

$$
\begin{aligned}
& \alpha=? \\
& \omega_{0}=+850 \text { rev/min }\left(\frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=89.0 \mathrm{rad} / \mathrm{s} \\
& \left(\sum T=I \alpha \text { requires that } \alpha \text { be in } \mathrm{rad} / \mathrm{s}^{2}\right)
\end{aligned}
$$

A bullet is shot into a solid disk of wood at rest as shown. It embeds itself in the disk, a distance of $1 / 2 R$ above the disk's center. What will the resulting angular velocity of the disk?

No external torques so $L_{i}=L_{f}$

$$
v=500 \mathrm{~m} / \mathrm{s} \quad m=0.010 \mathrm{~kg} \quad M=2 \mathrm{~kg} \quad R=0.4 \mathrm{~m}
$$

$$
L_{i}=m v l \text { with } l=R_{12}=0.2 \mathrm{~m}
$$

$$
\text { For the disk } I=\frac{1}{2} M R^{2}=\frac{1}{2}(2 \mathrm{~kg})(0.4 \mathrm{~m})^{2}=0.16 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
L_{f}=I_{f} \omega_{f}
$$

$$
I_{f}=I_{\text {disk }}+I_{\text {bullet }}=0.16 \mathrm{~kg} \mathrm{~m}^{2}+m(R / 2)^{2}
$$

$$
I_{f}=0.16 \mathrm{~kg} \cdot \mathrm{~m}^{2}+(0.010 \mathrm{~kg})(0.2 \mathrm{~m})^{2}=0.1604 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
\begin{aligned}
m v l & =I_{f} w_{f} \\
w_{f} & =\frac{m v l}{I_{f}}=\frac{(0.010 \mathrm{~kg})(500 \mathrm{~m} / \mathrm{s})(0.2 \mathrm{~m})}{0.1604 \mathrm{~kg} \cdot \mathrm{~m}^{2}}
\end{aligned}
$$

$$
\omega_{f}=6.23 \mathrm{ral} / \mathrm{s}
$$

$$
\begin{aligned}
& \text { Comments: In } L=I \omega \text {, wmurt be in rad /s } \\
& K_{i}=\frac{1}{2} m v^{2}=\frac{1}{2}(0.01 \mathrm{~kg})(500 \mathrm{~m} / \mathrm{s})^{2}=1250 \mathrm{~J} \\
& K_{f}=\frac{1}{2} I_{f} \omega_{f}^{2}=\frac{1}{2}\left(0.1604 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)(6.23 \mathrm{md} / \mathrm{s})^{2}=0.194 \mathrm{~J} \\
& \text { There is a large decrease in kinetic energy as a result of the collision }
\end{aligned}
$$

Angular Quantities Are Vectors Figure 10.29

- The "right-hand rule" gives us a vector's direction.

Angular velocity and angular momentum:
Curl the fingers of your right hand in the
direction of rotation. Your thumb then points in the direction of angular velocity and momentum.

Torque: Curl the fingers of your right hand in the direction the torque would cause the body to rotate. Your thumb points in the torque's direction.

Right-hand screws are threaded so that they move in the direction of the torque applied to them.

Vector nature of angular quantities

When the flywheel and its axis are stationary, they will fall to the table surface. When the flywheel spins, it and its axis "float" in the air while moving in a circle about the pivot.
Circular motion of flywheel axis (precession)

Gyroscopes Can Add Stability Figure 10.32

When the flywheel is rotating, the system starts with an angular momentum $\overrightarrow{\boldsymbol{L}}_{\mathrm{i}}$ parallel to the flywheel's axis of rotation.

- The gyroscopic motion adds stability to bicycles, footballs, bullets and more.

(a)

Now the effect of the torque is to cause the angular momentum to precess around the pivot. The gyroscope circles around its pivot without falling.

(b)

A Laboratory Gyroscope - Figure 10.33

- Refer to the worked example on page 309.

(b) Vector diagram
(a) Top view of spinning cylindrical gyroscope wheel

Pearson

Honda 600RR

Who races this bike?
Why can anybody race it, if he just dares to go fast?

The oval track of a
World Speedway allows speeds of 250 mph .

A non rotating and rotating gyroscope

When the flywheel is not rotating, its weight creates a torque around the pivot, causing it to fall along a circular path until its axis rests on the table surface.

(a)

In falling, the flywheel rotates about the pivot and thus has an angular momentum
\vec{L}. The direction of \vec{L} stays constant.
Pivot $\underbrace{\substack{\boldsymbol{y} \\ \Delta \overrightarrow{\boldsymbol{L}} \\ \Delta \overrightarrow{\boldsymbol{L}} \\ \Delta \overrightarrow{\boldsymbol{L}}}}_{\text {Flywheel }} \rightarrow \boldsymbol{x}$

View from above as flywheel falls
(b)

When the flywheel is rotating, the system starts with an angular momentum \vec{L}_{i} parallel to the flywheel's axis of rotation.

Now the effect of the torque is to cause the angular momentum to precess around the pivot. The gyroscope circles around its pivot without falling.

$\xrightarrow{\text { View from above }} x$
(a)
(b)

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

Precesion Angular Velocity Ω

Ω is the rate $\frac{\Delta \phi}{\Delta t}$ at which the axis moves

$$
\vec{L}=I \vec{\omega}
$$

$$
\Delta \vec{L}=\sum \vec{\tau} \Delta t
$$

$$
\sum \vec{\tau}=\frac{\Delta \vec{L}}{\Delta t} \quad \text { Analogous to } \sum \vec{F}=\frac{\Delta \vec{P}}{\Delta t} \quad \Delta \phi=\frac{|\Delta \vec{L}|}{|L|}
$$

$$
\Omega=\frac{\Delta \phi}{\Delta t}=\frac{\frac{|\Delta \vec{l}|}{|L|}}{\Delta t}=\frac{\tau}{L}=\frac{W r}{I \omega} \mathrm{rad} / \mathrm{s}
$$

W is the weight of the flywheel, and r is the distance from the pivot point of the center of mass of the flywheel.

Faster than Gravity

A small marble is placed on the tee at the very top of the raised end. A few inches below it is a plastic cup. The wooden board is held up by a wooden ruler. The ruler is quickly removed, allowing the board and the marble to fall due to the force of gravity. The center of percussion of the board is the point that has the acceleration of a free falling particle along the path that it follows, all points beyond the center of percussion descend with accelerations greater than they would have if they were particles moving freely on their respective paths. This is due to the board rotating about a hinged end. Thus, the cup falls at a faster rate than the marble, and the marble lands in the cup.

Vector Multiplication

Scalar product $\vec{A} \cdot \vec{B}=A B \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
Vector product $\quad|\vec{A} \times \vec{B}|=A B \sin \theta=|\vec{C}|$

Suppose that the height of a rapidly-growing beanstalk on Earth doubles each day, and in 36 days reaches the Moon. The number of days required to reach halfway to the Moon would be
a) 18 days.
b) 27 days.
c) 35 days.
d) None of these.

