Chapter 11
Elasticity and Periodic Motion
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Skiing with Harmonic motion in the German Alps



Chapter 11 Elasticity and Periodic
Motion

@ To understand stress, strain, and elastic deformation.
@ To understand elasticity and plasticity.

@ To understand simple harmonic motion (SHM).

@ To solve equations of simple harmonic motion.

@ To understand the pendulum as a an example of SHM.




Hooke’s Law

5.4 Elastic Force
Spring, Spring Restoring Force, and Hooke’s Law

Hooke’s Law on spring restoring force:
e In magnitude Fopr = KAL
e Direction: Opposed to length change —> restoring force
e A general expression taking care of the direction
Fpr = — kx

e X Is measured with respect to the equilibrium position

Example 5.14

A vertical spring balance scale stretches 1.00 cm when a 12.0
N weight is hung on it. If the 12.0 N weight is replaced by a
1.50 kg fish, by what amount is the spring stretched?

Answer:
Spring constant k = F/AL = (12.0 N)/(0.0100 m) = 1200 N/m
Stretching = F/k =mg/k =0.0123 m = 1.23 cm

equilibriumat x =0
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We did this for springs in chapter 5, now for general objects



Stress and
RN || | Tensile stress:
ﬁ ) “ - Opposed forces
/A1 | stretch the bone.
\ Shear stress:

strain
* L

" T | twist the bone.

/1| | Compressive stress:
|| /| Opposed forces
\l'|/  compress the bone.

Volume stress:
Water pressure squeezes
the swimmer.
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11.1  Stress, Strain, and Elastic
Deformation

What 1s stress?
The “intensity” of the force exerting on an object
quantified by the force per unit area.

What 1s strain?
The amount of relative deformation appears to an object
under the given stress.

The relationship between the two----If the stress is small,
the resultant strain is proportional to the stress:

Stress
—— = constant
Strain

Cross-sectional area A

(a) A bar in compression

i < > i
B = = ol

(b) Force on a cross section through the bar



Tensile and Compressive Stress and Strain

Tensile and compressive stress

. F
Tensile stress = f

Units: N/m? or pascal (Pa), in SI unit system
psi or pounds per square inches, in the British

units
Tensite and COmpIessIve Straimn
: .-l Al
Tensile strain=—= = —
lo lo

Units: none

Young’s modulus
Tensile Stress _ F, /A Iy F;
Tensile Strain Al/l, ANl

Units: N/m? or Pa

Cross-sectional
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~ Cross-sectional area A

t

FL || 1
i | S

|

(a) A bar in tension

We assume that the tension force
is distributed evenly over any
cross section through the bar.

¥k

.A
F, P < F,
] g et h
pe-
- -

(b) Force on a cross section through the bar
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Compressive stress unit:
pa=pascal=newton/m”2

Cross-sectional
area A
[ J [ i‘
| ‘ | | t ‘
\ '\“ \ \Aﬁ
o
| ly >
| AL
=
Stretched ‘ =

-
W W
U\
< 1=1+ A
Al

F
Tensile stress =~ Tensile strain =
A Iy
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Strain unit:
dimensionless



The Reaction to Stress Is Strain — Figure
11.4

* If we return to the

Cross-sectional

area A

steel cable example, J
we could ask Q
ourselves, "How | | Y
much will the steel Il I U
stretch under a load?" | | é}

l I N
Straln,_ then, is Al/l,, | — L
the unitless change In
length divided by the <« =10+ Al—>
original length.

F, Al

Tensile stress = T Tensile strain = l—
0
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Ql11.5 Clicker question

Two rods are made of the same kind of steel and have the same
diameter. A force of magnitude F'1s applied to each end of each rod.
Compared to the rod of length L, the rod of length 2L has

F length L F
S e

F length 2L F
L e

A. more stress and more strain.

B. the same stress and more strain.
C. the same stress and less strain.
D. less stress and less strain.

E. the same stress and the same strain.
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QI11.6 Clicker question

Two rods are made of the same kind of steel. The longer rod
has a greater diameter. A force of magnitude F 1s applied to
each end of each rod. Compared to the rod of length L, the rod

of length 2L has P length L F

e

F length 2L F
L e

A. more stress and more strain.

B. the same stress and more strain.
C. the same stress and less strain.
D. less stress and less strain.

E. the same stress and the same strain.

© 2016 Pearson Education, Inc.



Example 11.1
A stretching elevator cable

Given: m, ly, A, and Al

Find: the cables stress, strain, and Young’s modulus

Solution:

_F._ W __mg_ (550kg)(98 m/s?) g

Stress = T AT A T ozoxiotmz = 2.7 X 10° Pa

_ -2
Strain= 0 = 4t _ 04010 7m _ 49133

10 10 3.0m
Young’s Modulus

Stress 2.7 x 108 Pa »
= = =2.0%x10"" Pa

~ Strain  0.00133

Note: strain Is dimensionless

— 2
QO=3.Om /A 0.20 cm

A? =040 cm

7,

m =550 Kg




Elasticity and Plasticity

If stress is removed, If stress is removed,
l::‘l.jﬁ.l 'ic‘;:ums s OhjL‘Cl d( '.L'\ nJ '"“.\ y Tcnsilc Slress Compressive stress
ongmaal s X ) 1T : = < = or X |
E pc Fetumn 1o 1S aniginal Tensile strain Compressive strain
shape, 7
Elastic Plastic  Fracture Fa |
behavior behavior point pmr il ek
- A =3 Alft, A Al
I}

Hooke's law

no longer ...,
obeyed
. TABLE 11.1 Young's modulus
g Material Y (Pa)
1
Hooke's law Aluminum 0.70 x 10"
obeyed . " Brass 0.91 x 10"
Scale not linear Copper 1.1 % 10"
A
£ T2 Glass 0.55 x 10"
et
ol <1% Strain 30% fron 1.9 x 10"
Steel 2.0 x 10"
A FIGURE 11.12 Typical stress-strain dia- Tungsten 3.6 x 10"

gram for a ductile metal under tension.

F, =kx  Hook’s law



exampLe 1.1 A stretching elevator cable

A small elevator with a mass of 550 kg hangs from a steel cable that is 3.0 m long when not loaded. The
wires making up the cable have a total cross-sectional area of 0.20 cm’, and with a 550 kg load, the cable
stretches 0.40 cm beyond its unloaded length. Determine the cable’s stress and strain. Assuming that the
~ cable is equivalent to a rod with the same cross-sectional area, determine the value of Young's modulus for

 the cable’s steel.
qol
7/ =3.0m A= 0.20 cm’ S"’("SS: -550“3 giggi‘l = 2-?’"08PQ
0.20-10 "M
Al=0.90 cm3 S‘}Ymn_ AC o‘qo ,0

—-= 3
/// {o 30m 0.00133

- 550&3\3 Y S-’ms 92710 P
g}m M 0.0 0l3%

"Pa

1 Pa=1N/m 2



3. ® A vertical solid steel post 25 cm in diameter and 2.50 m
long is required to support a load of 8000 kg. You may ignore
the weight of the post. What are (a) the stress in the post,
(b) the strain in the post, and (c¢) the change in the post’s length
when the load is applied?

(ﬂ.) . 800 kg ?9 _
Svess = = H)zm)z/‘i 1610 P

b
U?) S,}m;h:'_rm; 1.6-10 Pa’ ¢ "

Y 20-10"Pa
(C) pl= Stoiwly = -20-16"m




Volume Stress and

Strain
. Initial volume V,, at Final volume V at
F, initial pressure p pressure p = py + Ap
Volume stress, or, pressure \ F,
_ FJ_ // Fl ///1
_— Ps |
P A -~ Z T }
- | ! =
. . . F F
Units: N/m? or Pa, in SI units —— | j -
o " . \ " |
psi, in the British units B N |
)
: | //
. | /
Volume strain _— B
: V-V, AV F,
Volume strain=——>2 = —
A A , , . AV
Volume stress = Ap  Volume strain :
. Vo
Units: none
Bulk modulus
change in pressure Ap

resulting volume strain o AV [V,

Units: N/m? or Pa




Shear Stress and Strain

Shear stress

F
Shear stress = X”
Units: N/m? or Pa
Shear strain
Shear strain= % =tan¢g = ¢ for x < A

Units: none

Shear modulus
Shear Stress _ Fy/A _ F;/A

Shear Strain x/h 0]
Units: N/m? or Pa

Area A

h | Before shearing

| x!

L
|

/

: //After shearing




[3. » In the Challenger Deep of the Marianas Trench, the depth of
scawater is 10.9 km and the pressure is 1.16 X 10° Pa (about
1150 atmospheres). (a) If a cubic meter of water is taken to
this depth from the surface (where the normal atmospheric
pressure is about 1.0 X 10° Pa), what is the change in its vol-
ume? Assume that the bulk modulus for seawater is the same
as for freshwater (2.2 X 10° Pa). (b) At the surface, seawater
has a density of 1.03 X 10° kg/m®. What is the density of sea-
water at the depth of the Challenger Deep?

() aV_ P_ 10 _
) R T 0.0

A= f (-0.053) ==0.83"°

0 m’ =1.056
0§ 9 L= ey

05 1055 ¢p, = 4056 10310 5%

=108 l0'-1



17. = In Figure 11.33, suppose the
object is a square steel plate, 10.0 cm
on a side and 1.00 c¢m thick. Find the
magnitude of force required on each 1
of the four sides to cause a shear
strain of 0.0400.

(Shear modulus for steel 0.84 -10’\11Pa)-
F/A |

Stran o "

F=A-S stain =(0.1m - D.01m)+0.84°10 Fa:

ODLIO‘ 3"( /0 N Stress——(N/m ) or (Pa)

Strain= IA—I (No dimension)
0



Shear Stress and Strain

Shear stress

F
Shear stress = X”
Units: N/m? or Pa
Shear strain
Shear strain= % =tan¢g = ¢ for x < A

Units: none

Shear modulus

Shear Stress

_F/A _Fj/A

Shear Strain x/h 0]
Units: N/m? or Pa

F)

Area A

<—=—>

Before shearing

X

<

Y

ToJ .

/
/’After shearing




Simple harmonic motion SMH
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11.2  Periodic Motion

Simple Harmonic Motion (SHM) illustrated by the
oscillations of a mass-loaded spring

Spring restoring force: E, = —kx
. F K
Acceleration of the mass: Ay === ——X
m m

Defining simple harmonic motion: motion driven by a
restoring force that is always opposite to the displacement and
directly proportional to the displacement in magnitude.

Note:
(a) The restoring force F 1s opposite to displacement;
(b) F is not a constant;
(b) As a result, the acceleration a, is not a constant;
(¢) a, varies between (+ k4/m) and (— kA/m);
(d) The magnitude of a, has a maximum a,,, = k4/m.

SR

0 A2 A
| | |
I | = —
| l a~\ C_lmax X
' | =0
| | "
a.
| | X
r e | *
| |
| a. = 0 L :
e — | -X
| Ux Umax
| |
: & 1
S
| Uy——Ls | *
[ ' |
A — Qi |
- X max [ —X
U = 0 | :
| | /
a |
—_ il o | - X
| l ;
| a, = Of
|— > = X
: U.n = Umax
|
[
|
|
L



(5 pts) 15. A block with mass 4.0 kg is attached to a horizontal spring that has force constant . The
block moves in simple harmonic motion on a horizontal frictionless surface. The amplitude of the

motion is 0.50 m and the maximum acceleration of the block has magnitude 20 m/s?. What is the
force constant k of the spring?

(2) 20 N/m

(b) 80 N/m

c) 1 m

(d) 240 N/m

(e) none of the above answers

k=am/A=(20m/s?)4kg/0.5m



Circle of Reference Simple harmonic motion is the

projection of uniform circular
motion on a diameter.

Consider a ball on a circular track
on the table and looking at it from
the side

(b)



Circle of Reference

I1luminated vertical screen

Shadow of ball _ -
on screen Ball moves in uniform
- v circular motion.
Ball’s shadow 1
| ¥ Shadow moves
. Ball on rotating 7 ¢ back and forth on
While the ball / \ c @
turntable / AA \ .xaxisin SHM.
on the turntable // I &
S i |57
es ) 5
moves in un_m rm I, diP
circular motion, €& — —
A 4 | (0] ]
its shadow moves \ /
back and forth on % x =Acos ¢
. = o /
the screen in simple —— Illumination 5 P
. . ~ -
harmonic motion. S~—]--
—— Table
Light beam
(a) Apparatus for creating the reference circle (b) An abstract representation of the motion in (a).

© 2012 Pearson Education, Inc.



Circle of Reference: Consider a small object undergoing a uniform
circular motion as shown in the sketch. The x-component of the
position of the object obeys SHM exactly. Therefore, the expressions
describing the x-component of its positon can be used to describe
SHM.

Let the angular velocity of the object be w, and, its angular position
¢, = 0 at t = 0. Let the radius of the circle be A.

The object’s the angular position at time t is ¢ = wt. We have the
following x-component quantities for the object:

The position x = Acos(¢) = Acos(wt) .....Equation of
SHM

The velocity v, = —vsin(¢p) = —(wA)sin(wt)

The acceleration Ay = — Apgq c0S(P) = —w?A cos(wt) =
— w?x

What is w?  Since for the spring along the x-axis a, = F,/m = —

kx/m we have w? =k/m  or w=.k/m,

and other quantities [ = ;)—n = i k/m, T= % = 2n/m/k

(a) Using the reference circle to
determine the velocity of point P

)
,/"'“\pQ
I 3
/7 N
o :<J5&x [N
S
/ | an \
! S
X
] 0 ]
\ a, = —agcos¢
\ /
\ y
\ ’
N 7
~ -’
\\~---’/

(b) Using the reference circle to
determine the acceleration of point P



x = Acoswt = Acos(2nft)
v = rw and (using the reference circle for the velocity of Q
Note: while Q rotates a full circle; P makes a complete back and forth vibration (1 cycle)

“Vibrational velocity” of P:

Uy = —Vpsing = —wAsing - ¢ =wt
2> v, = =2nfAsin(2nft) [°-’ sign at the instance shown v, is to the left]

“Vibrational acceleration” of P:

y‘
NSO
v? >\ 0
— — — 2 22 / ——,
= ’,l : d’ EP \‘n
\‘ v, = Uy sin ¢
a, = —Qypqq COS = —W?Acosp = 4n?f? Acos(2nft
X rad N ) ;
—y i‘ e
— ax = —w X (a) Using the reference circle to

| \ determine the velocity of point P.

Remember:

Use Hooke’s law

V=IW WA = aygg

(b) Using the reference circle to
determine the acceleration of point P.
Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley



Simple harmonic motion

T
(x) | I | |
AR L :
: 3 3 | x = A cos(wt + )
| | I | “
- ] , f ! chyles-sec
l I
= : ' ' :
I
_ _ L9
wt+¢p=0 - ¢=—-wt ..—t—;
21
wl=2n - T =—
w
1w _cycles_H hert
"f_T_Zn_ sec 7 (hertz)
w =2t f
angular lin?ar
frequency frequency

Velocity, v = —wA sin(wt + ¢)
Acceleration; a = —w 2 Acos(wt + @)



Position, Velocity,
and Acceleration

« Graphs from a
particle undergoing
simple harmonic
motion.

© 2016 Pearson Education, Inc.

Position x >

X max

3

max

Velocity v,

.

x = A cos wt

o,

AL
-\

U, = —wA sin wt
- I/\< [
l | |
I I /
10) | | | i
| | |
| | |

(b) Velocity as a function of time

|
g

1o
=

Amax —

Acceleration a,

-

a, = —w’A cos wt

=

i~
e
|

|

t ‘
|

|

|

'

" I ;I
I I e
-5 1

(¢) Acceleration as a function of time



x Juawoedsi(q

® A Sin(ot +¢ )

V=-

A Cos(ot +¢ )

X =

2T _
T =2nf

o —

D UOTIRIJ[QOOY

- > A Cos(ot +¢ )

_a:



Q14.2

Clicker question

This 1s an x-f graph for an object in simple harmonic motion. At
which of the following times does the object have the most

negative velocity v ?

Xax = A
A.t=T/4 O
B.t=T/2
“Xmax — —A
C.t=37/4
D.¢t=T

—T —T

l
|
|

H
H
ﬂ

K «
\
\
l
!
\

U
|
ﬂ

E. Two of the above are tied for most negative velocity.

© 2016 Pearson Education, Inc.



Q14.3 _ :
Clicker question

This 1s an x-¢ graph for an object in simple harmonic motion. At
which of the following times does the object have the most
negative acceleration a.?

Xmax — A K | ‘ | } |
| ' u |
A.t=T/4 J | ‘ \
0 1 ‘ t | t
B.t=1T1/2 | i v | \
—X = —A |

C.t=3T7/4
D.t=T

E. Two of the above are tied for most negative acceleration.

© 2016 Pearson Education, Inc.



Quantities that Describe Periodic Motion

® The amplitude of the motion is the maximum magnitude of the displacement,
A = |x|max-

e One cycle of the motion: one complete round trip.

® The period T of the motion 1s the time it takes to complete one cycle, in units of s.
e The frequency f of the motion is the number of cycles the motion complete in 1 s.
e The angular frequency w of the motion is 2w multiplies the frequency, w = 2rf.

® The relationships between 7, £, and w:

f= % Units: hertz or Hz 1 Hz=1s"!

w=2nf = 2?7? Units: rad/s




Example 11.5 on page 334, SHM on an air track

Given: m and A. Force constant k is give indirectly. SNV

Find: (@) force constant k , T -
. - - .y x=0 x=0.030
(b) the maximum & minimum velocities o
(c) the maximum & minimum accelerations e

(d) v & aat half way tox =0 A AN AAAAAAAA =
(e) K, U, and E at half way to x =0 g I

(a)

I I
x=20 x = 0.040 m

(b)

(a) Force constant k= F/x=(6.0N)/(0.030m) =200 N/m
(b) Vppgr = AJk/m =0.80m/s, vV, = —AJk/m=—0.80m/s, bothatx =20
(¢) ayux =1 kA/m=16.0m/s*> atx = —0.04 m; a,,,= — kA/m=—16.0m/s? at x = + 0.04 m

(@W—,IVMLW%_\fJPZ =—Q@Ws

=——x——;t- ) = - 8.0m/s?

(e)K=Emvx=0.12J U=Ekx =0.040J E=K+U=0.16]




Elastic Situations
Yield Simple
Harmonic Motion

© 2016 Pearson Education, Inc.

x << 0: glider displaced F, > 0,soa, = 0:

to the left from the compressed spring
equilibrium position. pushes glider toward
o equilibrium position.

%
x = 0: The relaxed spring exerts no force on the
glider, so the glider has zero acceleration.
% y ‘..... y
'.’. —
- A 7
%
X
-
mg

x = 0: glider displaced F, < 0,so0a, < 0:

to the right from the stretched spring pulls
equilibrium position. glider toward
B equilibrium position.

-
.
-

b

(c)



A block with mass m is attached to a spring with force constant k =
315 N/m. The spring is stretch in positive x direction by the amount
shown, and the block has an initial velocity in the negative x direction.
a) Find the amplitude of the block.

-4 m/s

A

b) Find the maximum acceleration of the block.
o c) Find the maximum force the spring exerts on the block.

W= 2,00k W= 318 M X 240,200m Ny = -4.00 wbr

nﬂ LKL = oy,
(PR

Al
W\ 52 U\Ih!ﬁl’\tn\\‘\\ﬁ"‘ D‘F '{v\erﬂ ae) !o\v’t 'G)r Pi
T
L—},“\":{ i wkyt= J—i KA

1S N
\9\ O\N\x: L’E"(Q.?‘NQ: S9.3wmf¢2

) Frwx so B2 kA= (zisnl)(0376 ) = e N



11.3  Energy in Simple Harmonic Motion

Conservation of Energy in SHM

1 1 1
EF = — A2=— 2 — 2
Zk vax+2kx

Velocity of an object in SHM as a function of position

=J_r\/n£1(A2 —x%) =% %\/(Az_xZ)

Note:
(a) v, = 0 when x = 1+A.

(b) Maximum speed Vy 1y = Ay k/m whenx = 0.

Eﬁi |

g

A1

Mechanical energy



0-6m The object to the left is following Simple Harmonic Motion. It starts at

v

the position shown with the velocity and acceleration as given. How

v=r22m/s much further from its current point will the object move before it stop
‘7 momentarily and then starts to move back to the left?
| Solve foc the angliude A, The addirional dlgronce e
a=-84 m/sz: o[ﬂ‘hq.«_ ’f w;\\ J\'K‘Lq‘e’\ .‘ 1 P‘__. 0.600 .

e Mbudtvw \hat e lades veleky aed ﬁ:c.{;f'ﬁaq L s

\

- W\\J: + 4 eyt Lk (wnsecvadionof evecgy)

'ﬂ\f‘ -E,T)LM'\IU—— Llij l‘"\r.l‘\xii ﬂf.ﬁﬂtf_rakl‘i}r\ 17 E}UJ:"‘TUV\ t‘f

hICd e
S N ( L F=ma

2 AN - 2
P“kx N ldine & ger 9\=l‘4 - %= H0.600w) Ny 242,205,
(g == GMO w[S*

T oy & :ll_;}.sm - = ( 1,20 | ;\1

AT A

A= [(0.360m)y (034570 = 080w

Whdioed Aigrance r 0,340 m=0.600 = 0- 240



(5 pts) 16. A block with mass 0.200 kg is on a horizontal frictionless surface and is moving in SHM
on the end of a spring. The amplitude of the motion is 0.150 m and the maximum speed of the block

during its motion is 3.00 m/s. What is the maximum speed of the block if the amplitude is increased to
0.300 m?

(@) 0.750 m/s
(b) 1.50 m/s

¢) 3.00 m/s
(d) 6.00 m/s
e) 9.00 m/s

(f) none of the above answers



Clicker question

You construct a spring—glider system that
osclillates with simple harmonic motion at a
frequency f. If you replace the glider with one
having one-fourth the mass, what is the system's

new frequency?
a) f

b) 2f
c) 1/2f
d) 1/4f

© 2016 Pearson Education, Inc.



Pause and Consider Our Terminology —
Figure 11.15

Oscillation

Restoring force

SHM

Hooke's Law

Amplitude (A) ... in meters
Cycle

Period (T) ... in seconds
Frequency (f) ... in 1/s or Hz

Angular frequency (w) ... in rad/s

© 2016 Pearson Education, Inc.
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Energy in SHM




A force varying with distance is the basis of SHM

Hooke’s law; F = kx for Spring

W= kX2

sssssssssssssssssssssssssssssssssssssssssssssssssssssssssss

Force x distance = work = energy [J=N.m]
The total work done on spring by F'1s area under the above graph;

W = %xF = %x(kx) = %kaZ potential energy



Energy in SHM Energy Changes as the Oscillator Moves —Figure 11.17

20

U@ 10-

0.5

00

* Energy is conserved during SHM and the forms
(potential and kinetic) interconvert as the position
of the object in motion changes.

1 1 1 1
E=—mv:+—kx’=—kA> =—mv
2 2 2 2

2
max

E is all potential

vx = il)max
h#
|
—
0

o
S|
E=K+ U
E is partly potential, E is all Kinetic E is partly pptential, E is all potential
partly kinetic energy. partly ki mkic gnergy.
energy. — r 2 _ A2
gy V) = “‘-_Pﬂ qy.— \/ A X
m
\




Energy Changes as the Oscillator Moves —
Figure 11.17

« Conserved in the absence of friction, energy
converts between kinetic and potential.

|
X 7 Amax

Ay = Umax a, = ay = — Ay = “max
e = =i ~if
3 3

Uy = 0 Uy = i\/;Umax Uy = iUmax Ux = i\/;Umax Uy = 0
» o o )

1 | | | ‘Ij_>x
A ~1A 0 3A A

- Pg’ v
E U E K

E is all potential
energy.

E is partly potential,

partly kinetic
energy.

© 2016 Pearson Education, Inc.

E is all kinetic
energy.

E is partly potential, E is all potential

partly kinetic energy.
energy. —
k
v, =+ —\/ A2 — x?
\ m




A Problem Using an Air Track — Example
11.5

Refer to the solved problem on page 334.

(b)

_F _
k=7" E= - kA2 —mvx + = kx Uy = X —\/Az — x*
© 2016 Pearson Education, Inc. \




Energy conservation in SHM

Energy

U(x) U(x)




The mechanical energy E is constant.

(a) The potential energy U and total energy E
of an object in SHM as a function of x position

© 2016 Pearson Education, Inc.

> X

A Kol 1

Mechanical energy

(b) The same graph as in (a), showing
kinetic energy K as well



Q1.0 Clicker question

This 1s an x-¢ graph for an object connected to a spring and moving
in simple harmonic motion. At which of the following times 1s the
potential energy of the spring the greatest?

—T —T

xmax:A\ | ‘ |
| 1 u
A . t=1T/8 O 1 1 t t
| |
L\ \/ \

B.t=T/4

max
C.t=37/8
D.t=1/2

E. Two of the above are tied for greatest potential energy.

© 2016 Pearson Education, Inc.



Q14.7 Clicker question

This 1s an x-f graph for an object connected to a spring and moving
in simple harmonic motion. At which of the following times 1s the
kinetic energy of the object the greatest?

—T —T

Xy = A K | ‘ |
| 1 |
r |
—y — —A L ‘ | \/ | \

B.t=1T/4

max
C.t=37/8
D.t=1/2

E. Two of the above are tied for greatest kinetic energy.

© 2016 Pearson Education, Inc.



Graphic Description of Position, Velocity, and Acceleration

The position: x = Acos(¢) = Acos(wt)

The velocity: v, = —vsin(¢p) = —(wA)sin(wt)
The acceleration: Ay = — Ayqq C0S(P) = —w?A cos(wt)
= —w?x

Parameters:
w?=k/m or w = .k/m,

1
f=2n=2mVkim

21T

T = % = 2nm/k

o

g

=
T

U, = —wA sin wt
|
|
I
|

\ X
max |/\< |/

s | |
| |

0 | /.
| \/
| | |
| | |

(b) Velocity as a function of time

Velocity v,

(5
a, = —wA cos wt

o

2

g
b
T

a max =

i |
| | |
| | |
| | |
t t t >
| | |
| | |
| | |

=

Acceleration a,

(¢) Acceleration as a function of time



A few notes about SHM:
e The angular frequency, period, and frequency are all independent of the amplitude.

1 1
w = k/m; T=}=27r,/m/k; f=2=§r k/m

21T

o [f ¢, # 0 att = 0, the previously derived expressions remain correct if the
angular

position ¢ = wt isreplaced by ¢ = ¢, + wt. For example, the position is
x = Acos(¢p) = Acos(¢p, + wt)

e Since x = Acos(¢), we may re-write

vy = —wAsin(wt) = iwA\/ 1 — [cos(wt)]?

= +w\/A% — [Acos(wt)]? = +wVA? — x2
— i\/%\/(}lz _ xz)




11.5 The Simple
Pendulum

The mass moves along a circular path but the tangential speed
is not a constant. Define & = 0 as the vertical and counter-
clockwise as positive. Define x as the position of the mass
along the arc in a similar way.

The tangential force is E. = —mgsin(0).
. . X
In the small angle limit E. = —mgl = —mg T

; X g
Newton’s Second Law —mg,=ma, or —X=
- -~ ——
f‘]i_._.-n.-n,l sxrtla tlo o QTINA £ . o o loodad congatan o
ULl lJCll U WILLL LIIC O11IvI Ul d 11I1AdDTIUAUCLL Dl}l 1115,

Spring restoring force E, = —kx.

: k
Newton’s Second Law —kx =ma, or -— —X =
s ol e
ULV

Laciatre foqe tle o oxana 42 P [
TUSIULLS 1UL LG SIIHPIC PuliuuluilL,
w

1
w =/g/L; f=5:=22V9/L; I'=-=2nJL/g

s




(5 pts) 18. A small object with mass 0.20 kg swings as a pendulum on the end of a long light rope. For
small amplitude of swing, the period of the motion is 3.0 s. If the object is replaced by one with mass
0.400 kg, what is the period for small amplitude of swing?

(@ 15s
(c) 6.0s

(d) 12.0s
(e) none of the above answers

| L
a)z\/g fz—\/g T=2r,—
L 2\ L g



A Pendulum Undergoes Harmonic Motion —

* The pendulum is a
good example of
harmonic motion.

» Oscilllations depend
on the length of the

pendulum and the N\ e
. . . o o -~"~|‘1-fm|c.
gravitational restoring, P

force BUT not the !
mass.

2
Y=y
mg Sin
. - ; \
The restoring force on the \
([ \ g cosf

bob is proportional to sin 6, \

not Lo 6. However, for small

6, sin @ = 6, so the motion is \\ _
approximately simple harmonic.\L. -~

(b) An idealized simple pendulum
© 2016 Pearson Education, Inc.



F=-mg Sin@ ~-mg0 Fr-M9y
. L
F=-kx — k=19

0=0_. Cos(ot+d)

o-[f-

Note: mass doesn’t enter
amplitude doesn’t enter



Clicker question

Foucault pendulum at TAMU

a) L=25m
b) L=10m
c) L=30m
d) L=35m



Clicker question

You install two rope swings from a tree in your
yard. The rope for swing A is 1/4 as long as the
rope for swing B. Assuming they behave like ideal
pendulums, how do their periods compare?

a) — Ip

A
b) T,=1/2T,
C) --A — 2TB
d) T,=V2Tg

© 2016 Pearson Education, Inc.



What is the period of a pendulum on mars (g(mass)=3.71 m/s"2), if the
period of this pendulum on earth is 1.6 sec.

, m
g'(mars) = 3.715—2

L

W T =21 |—

V9

So; T'(mars) = Zn\/g
—
T' g g 9.81
?z —’—)T'=T —,=16 m=2.6sec
K VI N




SUMMARY

Periodic motion: motion that repeats itself in a defined cycle. f=% T% w=2zzf=27”

T Xmux = A
Simple harmonic motion: if the restoring force ; ; ; \ /\

IS proportional to the distance from T o :
equilibrium, the motion will be of the SHM “Xmax = —A [ \/ \/ \
type. The angular frequency and period do
not depend on the amplitude of oscillation.

Simple pendulum: 1 7 } - o
@ = s f=— s T=2r,— |
L 2rx g .




X versus t for SHM then simple variations on a theme

b

T 5
PRI

b | —

(a) Increasing m; same A and k
Mass m increases from curve
I to 2 to 3. Increasing m alone
X increases the period.

L. 2 3

x(t) = Acos(wt + @)

(b) Increasing k; same A and m
Force constant k increases from
curve 1 to 2 to 3. Increasing k alone
1 decreases the period.

3 21

(¢) Increasing A; same k and m

O

Amplitude A increases from curve
1 to 2 to 3. Changing A alone has
X no effect on the period.
§ L é I & 1 é L

3

VERY IMPORTANT: frequency and period of oscillations
DO NOT depend on the amplitude!!



Q14.9 Clicker question

A simple pendulum consists of a point mass suspended by a
massless, unstrechable string. If the mass is doubled while the
length of the string remains the same, the period of the pendulum

A. becomes four times greater.

B. becomes twice as great.

C. becomes smaller by a factor of J2.
D. remains unchanged.

E. decreases.

© 2016 Pearson Education, Inc.



P o

>y SN/

k'hun to Joe Delomey

%
:
§

In which car will you be
moving the fastest at the
very bottom of the incline?

a) Front car.
b) Middle car.
¢) Rear car.
d) Other.

/

Ch 6 Energy



Office hours:

Carlos Tuesday and Wednesday atlpm-2pm in MPHY 470
S| session on Sundays

» '‘Jonah Dean' via 202331 PHYS 201 all
<cs-phys201-202331@lists.tamu.edu>

 cs-phys201-202331@lists.tamu.edu

o SIsession at 6:00-7:15In ILCB 224,
see you there!



Notification

* There will be no attendance quiz on
Thursday

* | have updated the lecture for chapter 11
 Carlos updated study guide for exam3




Series & Parallel Spring

« Two identical springs are linked together first
In series and then in parallel. A mass is hung
from each configuration and the effective
spring constant is measured and compared to

a) k (effective) is the same for 2 springs in series
b) k (effective) is different 2 springs in parallel
c) K is constant for single spring
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