Chapter 9 Rotational Motion

RIgid body instead of a particle
Rotational motion about a fixed axis
Rolling motion (without slipping)

Rotational Motion



Chapter 9 Rotational Motion

® To study angular velocity and angular acceleration.

® To examine rotation with constant angular acceleration.
® To understand the relationship between linear and
angular quantities.

e To determine the kinetic energy of rotation and the
moment of inertia.

® To study rotation about a moving axis.
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Chapter 9 Opener

Jupiter is the fastest rotating planet  lrotation takes about 10hours
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9.1  Angular Position, Angular Velocity,
and Angular Acceleration

Angular Position: 0 in radians (rad.)
Average Angular Velocity: Wgp = 2=91 = 29
t,—t, At
Angular Instantaneous Angular \Velocity : W = AI%I—?O% (rad./s)
AD'Sp_Iacemen Units and Conversion:
Att, = 27 rad. = 360°; 1 rad. = 360°/2m = 57.3°
T 1rev/s=2mrad./s; 1 rpm = 2n/60 rad./s
=
> 4 Angular Acceleration (average): S
% * S ’ B G T T T
P\\\ ; : . s Aw
\\y Angular Acceleration (instantaneous): a= Al%moE
\ >
Ne] X Units: rad./s?
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o wora dicuonary ~ - ;
yx,onc:epts of rotational motion

Distance d - angle 0
Velocity v = angular velocity w
Acceleration @ = angular acceleration &

Angle 0

How many degrees are in one radian ? (rad is the unit if
choice for rotational motion)

0= é -> ratio of two lengths

(dimensionless)
S 2nr
—=——=2nrad = 360°
" B60°  360°
1rad = =
2m 6.28
1rad 57°

unity = orlmd

= 57° .. Factors of

1 radian is the angle subtended at the center of a circle by
an arc with length
equal to the radius.

Angular velocity w
6, -0, A6 |(rad I AO |rad
= = N = S _—
Waor =00, T at s W=aSoar s
Other units are;
rev 2mrad rev 2w rad
= oo 1 —_— = 1 rpm —_— ——
S S min 60 s

One radian is the angle at which the arc s

has the same length as the radius r.

s=r

(a)

Angular displacement A6 of a rotating
yrigid body over a time interval Az:

A§ = 0, — 0,

A




We Have a Sign Convention — Figure 9.7

Counterclockwise Clockwise
rotation positive: rotation negative:
AG > 0, so Af < 0, so

w = AG/At > 0 o = A§/At < 0
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Angular acceleration <

 Aw |rad
- = lim —

(o QP— —_
At—0 At s2

av

w, —w; Aw (rad
G2

t,—t; At

Relationship between linear and angular quantities

As NG

S=0r2v,,=—=r—=1rw
> av - Ar At av
S ~At—->0 gives v=rw
w
/ T RV = ro
2
s \s = rf
Circle followed
by point P - F
/N6 \
. .
o? |

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley



Radial and tangential acceleration components:
* a,,q1S point P’s centripetal acceleration.
* a,,, means that P’s rotation is speeding up

(the body has angular acceleration). Tangential component of acceleration;

Av = rAw
Av _ Aw

y —
7 R | % _ (atan ent)av= =r
e AN g At At
= PO
// a

" Linear— | U} ) \P For; At = 0; |@angent =T &

acceleration i N a wzr

II/ . \\\ rad . i

of point P ) Radial component
l, S
: 3\9 a = vz = WZT
) N e
Magnitude of d

\\\ ,//, a = = 2 2
; la] =a= \/ar“d + Gan
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Angular Quantities

Kinematical variables to describe the rotational motion:
-> Angular position, velocity and acceleration

0 =— (rad
- (rad)

o=1im 29 299 adis)
At—0 At t

o= lim A2 99 (adss?)
At—0 At t

Rotational Motion



Angular Quantities: Vector

Kinematical variables to describe the rotational motion:
-> Angular position, velocity and acceleration
->\Vector natures

I
0=— (rad
- (rad)
ok=lim  29%_99¢ (radis)
At——0 At dt
A Ao ~ do ~
k =lim “——k=—Kk (rad/s’
« At——0 At dt ( )

X

Rotational Motion



“R” from the Axis (O)

Solid Disk Solid Cylinder

Rotational Motion



9.2

Rotation with Constant Angular Acceleration

Kinematic Equations for
Rotational Motion

«——| compare > Kinematic Equations for
Linear Motion

w(t) = wy + at

ceenenn(9.7) Ue(t) = Vor + Ayt ........(2.6)

1
0(t) = 6y + wot + - at?...(2.11) x(t) = xp + vo,t + %axtz...(Z.IO)

w? = wi +2a(0 —6,) ...(9.12) v =vé, +2a,(x —xy) ...(2.11)

Way :%[w(t) + wg]

...... (9.8) Vav,x =%[vx(t) + Voy]......(2.7)
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Kinematical Equations for constant
angular acceleration

Conversion :X—=>60,V-ow,a—>>«a

(1)6’:90+a)0t+% at’

(2) o =0,+at
(3) W’ = a)j +2a(6-6,)
Note : o = constant

Rotational Motion



Q5.2 Clicker question

A DVD is initially at rest so that the line PO on the disc’s surface
1s along the +x-axis. The disc begins to turn with a constant

a. = 5.0 rad/s?. At t = 0.40 s, what is the angle between the line
PO and the +x-axis?

y Direction
~of rotation
A. 0.40 rad
B. 0.80 rad
C.1.0rad @P 0 A
D. 1.6 rad

E. 2.0 rad
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The rear wheel of the stationary
bicycle is magnified for clarity

Att = 0:

Example 9.2 on page 261 Y@= 200md/s

Rotation of a Bicycle Wheel i \wo — 4.00 rad/s

Given: (a) a = 2.00 rad/s? | "2 o
(b) Att=0,6, =0 %

(c)Att=0, wy =4.00 rad/s

Find: (a)@att=3.00s
(b) w att=3.00s

Solution:

(8 () = 8 + wot +>at? =0+ (4.00 rad/s?)(3.00 5) + = (2.00 rad/s?)(3.00 )’
= 21.0rad = (21.0 rad)/(2n rad/rev) = 3.34 rev

(b) w(t) = wy + at = (4.00 rad/s) + (2.00 rad/s?)(3.00 s) = 10.0 rad/s

or w?=wj3+2a(8—6,) = (4.00 rad/s)? + 2(2.00 rad/s?)(21.0 rad) = 100 rad?/s?
w = 10 rad/s




Rotation of a Bicycle Wheel — Figure 9.8

The rear wheel of the stationary
bicycle is magnified for clarity

0 at t=3.00 s?
1
0 =0y + wyt +§at2

d 1 d
=0+ <4.00 %) (3.00s) + > <2.00 %) (3.005)?

1rev Att = 0:
=21.0rad = 21.0 rad <2 - d) = 3.34 rev. Y a = 2.00rad/s’
. . e " wy = 4.00 rad/s
3 complete revolutions with an additional 0.34 rev Q
3 0y = 0 for

rad
(0.34 rev) (ane—v) = 2.14 rad =123°

chosen spoke

w at t=3.00 s?

w=wy+ at s P
rad rad rad Ny //\
=4.00—+|2.00—- (3.00s) =10.0— « o=
S S S /;‘r.f,/ i
OR using A6 W\_/

w? = w3 +2a(0 —6,) =

2 2 .
rad rad rad See Example 9.2 in your text
= 400T +2 2005—2 (210 rad) = 1008_

2 )

rad
w = V].OO = 1OT

Remember counterclockwise rotation is positive
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9.3

Relationship Between

Linear

and Angular Quantities

/ by point P

/
// Circle followed

Length of Arc: s=r6f
. _As __A@6) _ A6 _
Average Speed: Vay = 5, = g7 = T3 = TWgy
Instantaneous Tangential \elocity:
. As . A6
v=lim—=r7rlim —=rw
At—0 At At—0 At
Direction: tangent to the circle.
Average Tangential Acceleration:
_Av ACrw)  Aw
Atan,av = E — At E = TQgy
Instantaneous Tangential Acceleration:
Argn = lim =2 = lim A(m)—rlimA—w—ra
tan = AtSo0 At At—0 At—0 At
) i v? rw)?
Radial Acceleration: apqq = — = ( r) = w’r

Magnitude of Acceleration: a =

2 2
\/ arad + atan




Figure 9.4

Merry-go-round

U

from axis of
10n to children

Axis of rotation

Compare the
angular velocities
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Clicker question

On a merry-go-round, you decide to put your
toddler on an animal that will have a small angular
velocity. Which animal do you pick?

a) Any animal; they all have the same angular
velocity.

b) One close to the hub.
c) One close to the rim.

© 2016 Pearson Education, Inc.



OR
< Rear sprocket

b

Vo= SAMe = r,®;= I,o,

. 2 2
Tooth spacing Is the same %rl = %2
1 2
@ N
o, N,

Rotational Motion



Q9.5 _ :
Clicker question
Compared to a gear tooth on the  ow j

rear sprocket (on the left, of
small radius) of a bicycle, a gear
tooth on the front sprocket (on
the right, of large radius) has

sprocket

Front sprocket

A. a faster linear speed and a faster angular speed.
B. the same linear speed and a faster angular speed.
C. a slower linear speed and the same angular speed.
D. the same linear speed and a slower angular speed.

E. none of the above.

© 2016 Pearson Education, Inc.



Example 9-3 “

Given: w = 10%; x= 50%; r=0.8m

m r =
Apgn =7 x= 0.8 * 50 = 403_2 2 _ Craa
_vz_ 2. _ 102 _an M Gan |
arad_7_wr_10 *0'8_805_2 o R —
Now;
m
g 2 2
al =a= |af,qt+atn, =89
El \/ rad T 9tan ) Path of discus
_ _ _ o = = 50 rad/s?
Energy in rotational motion and moment of inertia; w =10 rad/s
1 1 1 1 ’ Discus
D gmivi = ) gmirtw? = z(Z ’”i"iz)WZ =3w
i i [
1

1
K=§IW2 - I=Zmiri2

l
I =cMR? - | = MR?



/
// Circle followed

II by point P
| A

r

)

9.4

Kinetic Energy of Rotation and Moment of Inertia

How to calculate the kinetic energy of rotating rigid body?
Cut the rigid body into many small pieces, A, B, C, ...

Kinetic Energy for piece A:

1 1 1
K, = EmAvj = EmA(ra))flz EmArja)z

Total Kinetic Energy:
K = %mArja)z + %mBrga)z + %mcrcza)z + -
= %(mArj + mprg + meré + -+ )w?
= 1102
2
Define the Moment of Inertia:

I = muri + mgré + meré + -




Energy In rotational motion and
“(P moment of Iinertia:

€& ST 3(Zm) i

With moment of Inertia;
For large K, it is better faster and not so much heavier

Example: fly wheel.
K=-Iw? - I = MR? = ¥, m;r2[kg m]

e For general shapes; (c - factors)

centre of mass T

I = cMR?

cylinder

Hula hoop = all point on
. the circumference r; = R

surface




Axis passing through
Example 9.6, an abstract sculpture, on page 269 disksBandC B

. . " mp = 0.10 kg
Note: In rotational motion the moment of
inertia depends on the axis of rotation. It is not
like a mass a constant parameter of an object
0.50 m 0.30
Axis passing =t
through disk A
7 b b C
Al \. ‘ 0.40 m ;; | me = 0.20 kg
Example 9.6: An abstract sculpture v
m, = 0.30 kg

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

I = myri + mgrs + meré

a) Foraxis BC, disks B and C are on axis;
g =T71¢c = 0
Igc = myr? = 0.3 * (0.4)% = 0.048 kgm?

b) For axis through A perpendicular to the plane;
Ty = 0
I, = mgra + meréd = 0.1 % (0.5)% + 0.2 * (0.4)2 = 0.057 kgm?

c) If the object rotates with w = 4% around the axis through A
perpendicular to the plane, what is K,.,;?

1 1
Kot = EIAWZ =% 0.057 * (0.4)? = 0.46 ]



Table 9.2 Finding the moment of inertia for common shapes

(a) Slender rod, (b) Slender rod, (c) Rectangular plate, (d) Thin rectangular plate,
axis through center axis through one end axis through center axis along edge
1= L mr? 1= i 1= LM+ 1) I= M
12 3 12 3

o7

(e) Hollow cylinder (f) Solid cylinder (g) Thin-walled hollow (h) Solid sphere (i) Thin-walled hollow

cylinder sphere

2 2

1

I= %M(R,z +RY) 1= ~MR? 1= MR? 1= gMRZ I= —3—MR2

2




Q9.6 Clicker guestion
You want to double the radius of a rotating solid sphere while
keeping its kinetic energy constant. (The mass does not change.)
To do this, the final angular velocity of the sphere must be

A. four times its 1nitial value.
B. twice its initial value.

C. the same as its 1nitial value.
D. half of 1ts 1nitial value.

E. one-quarter of its initial value.

© 2016 Pearson Education, Inc.



Q9.7

Clicker guestion

The three objects shown here
all have the same mass and the
same outer radius. Each object
1s rotating about its axis of
symmetry (shown in blue). All
three objects have the same
rotational kinetic energy. Which
object 1s rotating fastest?

A. 1= %M(Rlz + R?)

R,

© 2016 Pearson Education, Inc.

R,

B =1lur

A. Object A 1s rotating fastest.
B. Object B 1s rotating fastest.
C. Object C 1s rotating fastest.

D. Two of these are tied for
fastest.

E. All three rotate at the same
speed.

C. I = MR?



Q-RT9.1 Clicker question

Objects A, B, and C all have the same mass, all have the same
outer dimension, and are all uniform.

e— 2R —2 <— 2R —> <—2R—>

Rank these objects in order of their moment of inertia about an
axis through its center (shown in blue), from largest to smallest.

BCA

© 2016 Pearson Education, Inc.



Q-RT9.2 Clicker question

Objects A, B, and C all have the same mass, all have the same
outer dimension, and are all uniform. Each object 1s rotating about
an axis through its center (shown in blue). All three objects have
the same rotational kinetic energy.

e—2R —2 <— 2R —> <— 2R

Rank these objects in order of their angular speed of rotation,
from fastest to slowest.

ACB

© 2016 Pearson Education, Inc.



Work-Energy Theorem: 2.0m
Wtotal — Kf — Ki 90N I< /;

Example 9.7 on page 271
A cable unwinding from a winch.

Find: (a) Final angular velocity .
(b) Final speed of cable

Solution:
Work done W=Fd=(9.0N)(2.0m)=18J

Apply the work-energy theorem

W =K~ K = I} —~lof = 1w}

(18 J) =~ ,w} = - [= (50 kg)(0.060 m)2]w? = (0.045 kg)w?
w; = 20 rad/s
Speed of cable v = rw;= (0.06 m)(20 rad/s) = 1.2 m/s

Courtesy of Wenhao Wu



Q5.8 Clicker guestion
A thin, very light wire 1s wrapped
around a drum that is free to rotate.
The free end of the wire 1s attached i
to a ball of mass m. The drum has
the same mass m. Its radius is R and
its moment of inertia is / = (1/2)mR?>.
As the ball falls, the drum spins.

At an instant that the ball has

translational kinetic energy K, what

1s the rotational kinetic energy of the

drum? Q "

A. K B. 2K C. K/2 D. K/4

E. none of these

© 2016 Pearson Education, Inc.



L. L4 5 oL AL LML e By L ylliliAcL, U Il UM WidlICCl dlila Le s L Vs o LULILE LD L
a 1.50 kg weight over two massless frictionless pulleys as shown in Figure 9.3315. The
cylinder is free to rotate about an axle through its center perpendicular to its circular taces,
and the system is released from rest. (a) How far must the 1.50 kg weight fall before it

reaches a speed of 2.50 m/s? (b) How fast is the cylinder turning at this instant?

Figure 9.33

- <

/ 1.50 kg

Problem 4110,

9.41. Set Up: The speed o of the weight is related to @ of the cylinder by v = Rw, where R=0.325m. Use
coordinates where +y is upward and y; =0 for the weight. y; = —h, where h is the unknown distance the weight

descends. Let m=1.50 kg and M =3.25 kg. For the cylinder | = %MRZ.

Solve: (a) Conservation of energy says K; +U; = K; +U;. K; =0 and U; =0. Uy = mgyy; = —mgh.

2
Ke = 2mo? + S 1 o2 :1m02+1[3MR2j (3) :(lm +1Mj V2
2 2 2 2\2 R 2 4

[1m+1M]u —mgh=0

2 4
[1m + 1M] % [1(1.50 kg) + 1(3.25 kg)}(2.50 m/s)?
ho2 4 _L2 4 . — 0.664 m
mg (1.50 kg)(9.80 m/s“)
(b) == _2.50MS _ 7 69 radis

© 2016 Pearson Edﬁcat|9n3%



0.200 kg
A 2 B
Problem 9.31: C/ Q
a) Each mass is at a distance r = —“2*(20'4)2 = % from the axis. \D

0.4

[=Ymr?=4x02= (—) = 0.064 kgm?* (axis is through center)

V2

b) Each mass is r = 0.2m from the axis.
I =4%0.2%*(0.2)%2 =0.032 kgm? ( axis is along the line AB)

- 0.4 .
c) Two masses are on the axis and two are Ve from the axis.

2
[=2%02 (0'4> 0.032 kgm?
= 2*%x0.2%x|— = U. m

NG g

(axis is alongCD)

The value of | depends on the location of the axis.



0.600 m
Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

Problem 9.34:

2, 8 2 2
I, =mymRe + §mspokeR = 0.193 kgm

Rotational Motion



Example 9.10  Race of rolling objects

Slidding with
no friction

Which object will win?

v=Rw

Copyrght € 2007 Pesseson Education, bac. publishing as Addison Wesisy

All moments of inertia in the previous table can be expressed as;
I, = BMR? = cMR? (c - number)

Compare;
a) For athin walled hollow cylinder g =1

b) For asolid cylinder g = % etc.

Conservation of energy;

O+Mir—%wz+1l2—1M2+ﬁ'MR2v1—11+ Mv?

_ | 2gh
V= 1+p

Small S bodies wins over large £ bodies.



On a horizontal surface , what fraction of the total kinetic energy is
rotational?

a) a uniform solid cylinder . b) a uniform sphere c)a thin walled hollow sphere
d)a hollow cylinder with outer radius R an inner radius R/2

9.49. Set Up: Apply Eqg. (9.19). For an object that is rolling without slipping we have v,,, = Reo.
Solve: The fraction of the total kinetic energy that is rotational is
(U2)l 0? ~ 1 ~ 1
W2IMVZ, + U2l @® 1+ (Mg Weilw? 1+ (MR?/l,,)

@) 1., = (/2)MR?, so the above ratio is 1/3.

(b) 14, = (2/5)MR? so the above ratio is 2/7.

(©) Iy = (2/3)MR?s0 the ratio is 2/5. K:% Mv? + %IWZ

(d) I, = (5/8)MR? so the ratio is 5/13.

Reflect: The moment of inertia of each object takes the form 1 = pMR2. The ratio of rotational

l . .
__B . The ratio increases as g

Kinetic energy to total kinetic energy can be written as
1+1Up 1+p

Increases. . :
Small £ bodies win over large B bodies

Rotational Motion



\
9.40 A light string is wrapped around the outer rim of a solid // \
uniform cylinder of diameter 75 cm that can rotate about an axis ‘\ 2
through its center. A stone is tied to the free end of the string .When 1 y
the string is released from rest the stone reaches a speed of 3.5m/sec \\\J/

after having fallen 2.5 m What is the mass of the cylinder??

[ 3.00kg

Use coordinates where +y is upward. Take the origin at the final position of the stone, so for the stone y; =0 and
y; = 2.50 m. The cylinder has no change in gravitational potential energy. The cylinder has rotational kinetic energy and
the stone has translational kinetic energy. Let m be the mass of the stone and let M be the mass of the cylinder. For the cylinder

| = %MRZ. The speed of the stone and the angular speed @ of the cylinder are related by v = Rw.

Solve: Conservation of energy says U; + K; =Us + K;. K; =0 and U; =0, so U; = K;. The conservation of energy

. 1 5, 1
expression becomes mgy; :Emu +§Ia) :

P l[lMRZJ (LIR)? = I, so may; = Lmo?+ Imo? and
2 " 2\2 4 2 4
2m(2gy, ~ ?)  2(3.00 kg)| 2(9.80 mis?}(2.50 m) - (3.50 ms)’ |
M = > = 5 =18.0 kg
v (3.50 m/s)

Rotational Motion
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47, 1II A size-> soccer ball of diameter 22.6 cm and mass 426 g rolls up a hill without slipping,
reaching a naximum height of 5.00 m above the base of the hill. We can model this ball as
a thin-walled, hollow sphere. (a) At what rate was it rotating at the base of the hill? (b)

How much rotational kinetic energy did it then have?

*9.47. Set Up: The ball has moment of inertia |, = %mRZ. Rolling without slipping means v, = Rw. Use coordinates
where +y is upward and y = 0 at the bottom of the hill, so y; =0 and y; = h =5.00 m.
Solve: (a) Conservation of energy gives K;+U;=K;+U;. U;=0, K;=0 (stops). Therefore K;=U; and

1 1
Emuczm +5 | gm@? = mgh.

2
1 2 1(2 2 ¥ 1 2 5 2
—lm@ :E[ng j(—;’“j =§mucm SO gmUcm = mgh

2
o [B9 Je(g.ao ms)E00m) o
\'s5 5

and
= Yem _ 7.67 mis =67.9 rad/s
R 0.113 m
1. -, 1 -, 1 2
(b) Kot = > lo® = gmUcm = 5(0.426 kg)(7.67 m/s)© =8.35J

Reflect: Its translational kinetic energy at the base of the hill is Emufm = gKrot =12.52 J. Its total kinetic energy is

20.9 J. This equals its final potential energy: mgh = (0.426 kg)(9.80 m/sz)(5.00 m) =20.9 J.
Rotational Motion



50. I A string is wrapped several times around the rim of a small hoop with a radius of 0.0800
m and a mass of 0.180 kg. If the free end of the string is held in place and the hoop is
released from rest (see Figure 9.3410), calculate the angular speed of the rotating hoop

after it has descended 0.750 m.

Figure 9.34

0.0800 m

9.50. Set Up: Only gravity does work, so Wy, =0 and conservation of energy gives K;+U; =K +Us.
Let y,=0, so U =0 and y; =0.750 m. The hoop is released from rest so K;=0. K;= %Muczm +%Icma)2.

Ve = Rew. For a hoop with an axis at its center, 1., = MR?.

Solve: Conservation of energy gives U; = K¢. K; = %MRza)2 + %(MRZ)co2 = MR%»?, so MR?»? = Mgy;.

Joyi _ /(9.80 mis)(0.750 m)

~0.0800 m.
Rotational Motion

=33.9 rad/s

=



45.1 A 2.20 kg hoop 1.20 m in diameter is rolling to the right without slipping on a horizontal
floor at a steady 3.00 rad/s. (a) How fast is its center moving? fl&ﬁ-‘%"hat is the total kinetic

energy of the hoop?

*9.45. SetUp: Since there is rolling without slipping, v, = Rew. The kinetic energy is given by Eq. (9.19). We have
w=3.00rad/s and R =0.600 m. For a hoop rotating about an axis at its center we have 1 = MR?.
Solve: (a) vy, = Rw=(0.600 m)(3.00 rad/s) =1.80 m/s

(b) K = %M V2 + % |w? = % Moz + %(MRZ)(ucm/Rz) = M2, = (2.20 kg)(1.80 m/s)? =7.13J

Reflect: For the special case of a hoop, the total kinetic energy is equally divided between the motion of the center of
mass and the rotation about the axis through the center of mass.

Rotational Motion



51. 11 A 150.0 kg cart rides down a set of tracks on four solid steel wheels, each with radius

20.0 cm and mass 45.0 kg. The tracks slope downward at an angle of 20" to the horizontal.

If the cart is released from rest a distance of 16.0 m from the bottom of the track
(measured along the slope), how fast will it be moving when it reaches the bottom?
Assume that the wheels roll without slipping, and that there is no energy loss due to

friction.

9.51. Set Up: Solve this problem using energy conservation: AK = —AU. The change in potential energy of the cart is
AU = MgAy, where the total mass is M =150.0 kg + 4(45.0 kg) = 330.0 kg and the vertical displacement of the cart is
given by Ay =—(16.0 m)sin20°=—-5.472 m. The kinetic energy of the cart consists of its translational kinetic energy
and the rotational kinetic energy of its four identical wheels. The initial kinetic energy is zero, so

AK = %M v% + 4(% I a)zj . The moment of inertia of each wheel is that of a solid cylinder: | = %mr2 with m = 45.0 kg.

—MgAy = %M V2 + 4@ | a)z]

2
Y V% + Z[Emrzj (Bj
2 2 r
_ 2 [M+ mj
2
o_ . [FMoay _ [-gay
M 1 m
= am bl
2 2 M
~(9.8 m/s?)(-5.472m)
2 " 330.0kg

Solve:

Reflect: If we ignore the rotational energy of the wheels, we would get v = /2gh = \/ 2(9.80 m/s?)(5.472 m) =10 m/s for

the speed of the cart at the bottom of the slo&gﬁé%%}amggég%f the cart is only slightly slower than this due to the relatively
small moment of inertia of the wheels.



Clicker question

You are preparing your unpowered soapbox

vehicle for a soapbox derby down a loca
You're choosing between solid-rim whee

hill.

s and

wheels that have transparent hollow rims. Which

kind will help you win the race?

a) Either kind; it doesn't matter.
b) The solid-rim wheels.

c) The transparent hollow-rim wheels.
solid

© 2016 Pearson Education, Inc.

hollow




Conservation of energy in a well

Conservation of Energy: Ui+ K; = Us + K¢

Example 9.8 on page 269
Given: M, R, m, and h
Find v and w just before hitting the water

Solution:

As the bucket descends, it potential energy decreases
and is converted to kinetic energy.

Apply the conservation of energy:

mgh+0+0=0+%mv2+%la)2
— 2 +idMrHYO)2 =12 1 2
=Smv +2(2MR )(R) —2(m+2M)v

1 2a0h
v = and o=- g
1+M/2m

Note: free fall velocity for M<<<m; all energy goes to kinetic and not rotation




9.5  Rotation about a
Moving AXis
How to calculate the kinetic energy of a rigid body that is
rotating and also having a linear motion?
K = Kiinear + Krotational = EMvczm + Elcmw2
(& Example 9.9 on page 272
<£>| E@\M Ay | Given: Given M, R, and h
0 Find: Velocity of the center of mass v,
Ucm -
A \M Oy, = Solution:
U; = Mgh, Ki =0, U:=0
h 1 1
. K = Kem + Kot = 5 MV + - Iemw?
. _ 1 2 1.1 2 Vem 2 3 2
Y Lo T2Mvan+3GMRO)E)™= 3 Mvem

Apply the conservation of energy: Mgh+ 0 =0+ %Mvczm

Vem = +/4gh/3

Courtesy of Wenhao Wu




Calculate the angular momentum and kinetic energy of a solid uniform sphere with a
radius of 0.12 m and a mass of 14.0 kg if it is rotating at 6.00 rad/s about an axis
through its center

I = %MRZ = % x (14kg)(0.12m)? = 0.0806 kgm?

2
m
L =Iw = 0.0806 kgm? * 6.0 rad = 0.484 kgT

K= trwz=tiw = H0484ke™ ) « 6 rad = 1.45
= — = — = — . — | ¥ = 1.
> w > w > gS ra J



Q-RT9.3 Clicker guestion

Two 1dentical uniform solid spheres are attached
by a solid uniform thin rod. The rod lies on a line
connecting the centers of mass of the two spheres.
Axes A, B, C, and D are 1n the same plane as the
centers of mass of the spheres and of the rod.

For the combined object of
two spheres plus rod, rank the
object’'s moments of inertia
about the four axes, from
largest to smallest.

CBAD

© 2016 Pearson Education, Inc.



Relationship between Linear and Angular Quantities

(1)6’£:LRj=a)t (like | =Vvi)

S =(Rw)t
V=Row
dv dw
2)a -V _Rpi®
O T
Say,, = Ra
2 2
@)a, =L =R _ R

rad R o R

Rotational Motion



Find the magnitude of the tangential component of acceleration (a,,,), the radial
Wy =0 component of acceleration (a,,4), and the total acceleration (a) of a point on its rim..
a=06rad/s2  a. Atthe start

b. After it has turned through 60°

c. Afterit has turned through 120°

2 | A% 3
O\huﬂ.: fd-}'.'l“*: Cw | &*mﬂ‘fﬂ\fh&

A wawn be in f'&j\!fl and W mart be in (‘Ml-/a.r

1
6"\ | § Ly AR AT ind 2 w.:..ll {-“0 Gréﬁﬁ""ti{f

A Ar M shpcr W=0 50 6 =0 \
) (hyp = CA = (u.zaam)(o,eaam/fal - 0,180 m[s* &l s

O = 0.180 wis™

oi}hf+-l' T



Find the magnitude of the tangential component of acceleration (a,,,), the radial
w0y =0 component of acceleration (a,,4), and the total acceleration (a) of a point on its rim..
a=06rad/>  a. Atthestart

b. After it has turned through 60°

c. Afterit has turned through 120°

1 Wi o ponstant anguler Acte lecation eﬁuﬂ-ﬁ'hjﬁ) fnd W

¢ 1—1{('9..3\ ~
9'905 60.0 (W)_ l05m1
W,=0 Nl;%*ai(e‘ﬂ)
ol = 0.600 cp\Lfs"-
0-0,=1.05 ek =122 (8-8,) =] 200600 ced [ %) (Lo5wd)
-0,= .05 ¢ |
L\):? (ﬁ}:l“q[Q/f

O = €= (0,3m) K|.|1r¢l,‘;)i = 0378 mfs®

6= [ Rk =080 2



Find the magnitude of the tangential component of acceleration (a,,,), the radial
w0y =0 component of acceleration (a,,4), and the total acceleration (a) of a point on its rim..
a=06rad/>  a. Atthestart

b. After it has turned through 60°

c. Afterit has turned through 120°

¢ a - o (2Tced\
) 80,2 1200 ()= 2,094

W= (2 (0600 cet]?) (1,09 cut) = 15T I

Geed 20,3\ 155 ol [5)" = 0752 w52

-

0 = (U,\Kﬂhfsq +{0.751wf51)1 =077y Nide



a) How fastis the wheel moving at the bottom of the slope (assume no
slipping occurred)?

b) How much Kinetic Energy does the wheel have when it reaches the
bottom?

m =% L5 \(S
Y s
0 CWEE
k T=mr’, R= 0426w

16w

Ko Wi+ Workee = W\

Wollier =0, \)\g:() ::wxg\v\ wi M, \\:75m

T \ 2L
K=Y x 3 Tw
no <\lpping weans V=R w

1

T =T
- WA

| R A N SR Ay = WV
\/\:LLM\)I‘*LZ M(\\k{{\ - 5

1~

e 8 _ \l\f\\/
\l‘ A\'W\ \/\ - L
VWA \ S e 1513(751'“) = /)\q'j, M/j

Y e(a0w
\J‘Q:\l\}\fg\« :&(H.Ow,;\ e



a) How fastis the wheel moving at the bottom of the slope (assume no
slipping occurred)?

b) How much Kinetic Energy does the wheel have when it reaches the
bottom?

A T e 'Lt - O 3
\0\ K;:M\JF z k"l"lf’kﬁ\kv“" l;\ \Olﬁ J
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