
Rotational Motion

Chapter 9   Rotational Motion

Rigid body instead of a particle

Rotational motion about a fixed axis

Rolling motion (without slipping)



● To study angular velocity and angular acceleration.
● To examine rotation with constant angular acceleration.
● To understand the relationship between linear and 
angular quantities.
● To determine the kinetic energy of rotation and the 
moment of inertia.
● To study rotation about a moving axis.

Chapter 9 Rotational Motion

Courtesy of Wenhao Wu
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Chapter 9 Opener

Jupiter is the fastest rotating planet      1rotation takes about 10hours



Angular

Displacemen

t

9.1 Angular Position, Angular Velocity,

            and Angular Acceleration 

Angular Position:  𝜃 in radians (rad.)

Average Angular Velocity:  𝜔𝑎𝑣 =
𝜃2−𝜃1

𝑡2−𝑡1
=

∆𝜃

∆𝑡

Instantaneous Angular Velocity : 𝜔 = lim
∆𝑡→0

∆𝜃

∆𝑡
 (rad./s)

 Units and Conversion: 

 2𝜋  rad. = 360º; 1 rad. = 360º/2𝜋 = 57.3º

 1 rev/s = 2𝜋 rad./s; 1 rpm = 2𝜋/60 rad./s

Angular Acceleration (average): 𝛼𝑎𝑣 =
𝜔2−𝜔1

𝑡2−𝑡1
=

∆𝜔

∆𝑡

Angular Acceleration (instantaneous): 𝛼 = lim
∆𝑡→0

∆𝜔

∆𝑡

 Units: rad./s2

Courtesy of Wenhao Wu



Concepts of rotational motion
3 word dictionary

Distance d → angle θ

Velocity 𝒗 → angular velocity 𝒘
Acceleration 𝒂 → angular acceleration ∝

Angle θ

How many degrees are in one radian ? (rad is the unit if 

choice for rotational motion)

  𝜽 =
𝑺

𝒓
 → ratio of two lengths 

(dimensionless)
𝑺

𝒓
=

𝟐𝝅𝒓

𝒓
= 𝟐𝝅 𝒓𝒂𝒅 ≅ 𝟑𝟔𝟎°

 𝟏 𝒓𝒂𝒅 ≅
𝟑𝟔𝟎°

𝟐𝝅
=

𝟑𝟔𝟎°

𝟔.𝟐𝟖
= 𝟓𝟕°  ∴ Factors of 

unity 
𝟏 𝒓𝒂𝒅

𝟓𝟕°
 or 

𝟓𝟕°

𝟏 𝒓𝒂𝒅

1 radian is the angle subtended at the center of a circle by 

an arc with length

 equal to the radius.

Angular velocity 𝒘

𝒘𝒂𝒗 =
𝜽𝟐 − 𝜽𝟏

𝒕𝟐 − 𝒕𝟏
=

∆𝜽

∆𝒕
 

𝒓𝒂𝒅

𝒔
 → 𝒘 = lim

∆𝒕→𝟎

∆𝜽

∆𝒕
 

𝒓𝒂𝒅

𝒔

Other units are;

𝟏
𝒓𝒆𝒗

𝒔
=

𝟐𝝅 𝒓𝒂𝒅

𝒔
 ∴ 𝟏

𝒓𝒆𝒗

𝒎𝒊𝒏
= 𝟏 𝒓𝒑𝒎 =

𝟐𝝅

𝟔𝟎

𝒓𝒂𝒅

𝒔



We Have a Sign Convention – Figure 9.7

© 2016 Pearson Education, Inc.



Angular acceleration ∝

∝𝒂𝒗=
𝒘𝟐 − 𝒘𝟏

𝒕𝟐 − 𝒕𝟏
=

∆𝒘

∆𝒕
 

𝒓𝒂𝒅

𝒔𝟐
 → ∝= lim

∆𝒕→𝟎

∆𝒘

∆𝒕
 

𝒓𝒂𝒅

𝒔𝟐

Relationship between linear and angular quantities

  𝐬 = 𝜽𝒓 → 𝒗𝒂𝒗 =
∆𝒔

∆𝒓
= 𝒓

∆𝜽

∆𝒕
= 𝒓𝒘𝒂𝒗

  ∴ ∆𝒕 → 𝟎 𝒈𝒊𝒗𝒆𝒔 𝒗 = 𝒓𝒘



Tangential component of acceleration;

∆𝑣 = 𝑟∆𝑤

(𝑎𝑡𝑎𝑛𝑔𝑒𝑛𝑡)𝑎𝑣=
∆𝑣

∆𝑡
= 𝑟

∆𝑤

∆𝑡

For;  ∆𝒕 → 𝟎; 𝒂𝒕𝒂𝒏𝒈𝒆𝒏𝒕 = 𝒓 ∝

Radial component

𝒂𝒓𝒂𝒅 =
𝒗𝟐

𝒓
= 𝒘𝟐𝒓

Magnitude of Ԧ𝑎

𝒂 = 𝒂 = 𝒂𝒓𝒂𝒅
𝟐 + 𝒂𝒕𝒂𝒏

𝟐



Rotational Motion

Angular Quantities

Kinematical variables to describe the rotational motion:

→Angular position, velocity and acceleration




)(

)(

)(

2

0 t

0 t

rad/s     
dt

d

t
 lim 

rad/s     
dt

d

t
 lim 

rad   
R

l
 

ave
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Rotational Motion

Angular Quantities: Vector

Kinematical variables to describe the rotational motion:

→Angular position, velocity and acceleration

→Vector natures

x

y

z

R.-H. Rule

)(

)(

)(

2
rad/s   k 

dt

d
kk

rad/s   k 
dt

d
kk

rad   
R

l
 

ˆˆlimˆ 
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0

0



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



=



=

=
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
=

=

⎯→⎯

⎯→⎯

t

t
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Rotational Motion

“R” from the Axis (O)

Solid Disk Solid Cylinder



9.2 Rotation with Constant Angular Acceleration

𝑣𝑥 𝑡 =  𝑣0𝑥 +  𝑎𝑥𝑡   ……...(2.6)

  𝑥 𝑡 = 𝑥0 + 𝑣0𝑥𝑡 +
1

2
𝑎𝑥𝑡2…(2.10)

  𝑣𝑥
2 = 𝑣0𝑥

2 + 2𝑎𝑥 𝑥 − 𝑥0   …(2.11)

  𝑣𝑎𝑣,𝑥 =
1

2
[𝑣𝑥 𝑡  +  𝑣0𝑥]……(2.7)

Kinematic Equations for

    Rotational Motion

Kinematic Equations for

        Linear Motion

𝜔 𝑡 =  𝜔0 + 𝛼𝑡   ………....(9.7)

  𝜃 𝑡 = 𝜃0 + 𝜔0𝑡 +
1

2
𝛼𝑡2…(2.11)

  𝜔2 = 𝜔0
2 + 2𝛼 𝜃 − 𝜃0   …(9.12)

  𝜔𝑎𝑣 =
1

2
[𝜔 𝑡  +  𝜔0]……(9.8)

compare

Courtesy of Wenhao Wu



Rotational Motion

Kinematical Equations for constant 

angular acceleration 

constantNote

  

ax    Conversion

   :
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:

=

+=

+=

++=

→→→











0

2

0

2

0

2

00

-2 (3)

 (2)

2

1
 (1)

 , , 

t

  t t

v



© 2016 Pearson Education, Inc.

Q9.2

A. 0.40 rad

B. 0.80 rad

C. 1.0 rad 

D. 1.6 rad

E. 2.0 rad

A DVD is initially at rest so that the line PQ on the disc’s surface 

is along the +x-axis. The disc begins to turn with a constant 

 = 5.0 rad/s2. At t = 0.40 s, what is the angle between the line 

PQ and the +x-axis?

Clicker question



Solution:

(a) 𝜃 𝑡 = 𝜃0 + 𝜔0𝑡 +
1

2
𝛼𝑡2 = 0 + (4.00 rad/s2)(3.00 s) + 

1

2
 (2.00 rad/s2)(3.00 s)2

          = 21.0 rad = (21.0 rad)/(2p rad/rev) = 3.34 rev

(b)  𝜔 𝑡 =  𝜔0 + 𝛼𝑡 = (4.00 rad/s) + (2.00 rad/s2)(3.00 s) = 10.0 rad/s

     or    𝜔2 = 𝜔0
2 + 2𝛼 𝜃 − 𝜃0  = (4.00 rad/s)2 + 2(2.00 rad/s2)(21.0 rad) = 100 rad2/s2

 𝜔 = 10 rad/s

Example 9.2 on page 261

Rotation of a Bicycle Wheel

Given: (a) a = 2.00 rad/s2

 (b) At t = 0, 𝜃0 = 0
 (c) At t = 0, 𝜔0 = 4.00 rad/s

Find: (a) 𝜃 at t = 3.00 s

 (b) 𝜔 at t = 3.00 s

The rear wheel of the stationary 

bicycle is magnified for clarity



Rotation of a Bicycle Wheel – Figure 9.8

θ at t=3.00 s?

𝜃 = 𝜃0 + 𝜔0𝑡 +
1

2
𝛼𝑡2

 = 0 + 4.00
rad

s
3.00 𝑠 +

1

2
2.00

rad

s2
3.00 s 2

 = 21.0 rad = 21.0 rad
1 rev

2𝜋 rad
= 3.34 rev.

3 complete revolutions with an additional 0.34 rev

0.34 rev 2π
rad

rev
= 2.14 rad =123º

ω at t=3.00 s? 

𝜔 = 𝜔0 + 𝛼𝑡

 = 4.00
rad

s
+ 2.00

rad

s2
3.00 s = 𝟏𝟎. 𝟎

𝐫𝐚𝐝

𝐬

OR using Δθ

𝜔2 = 𝜔0
2 + 2𝛼 𝜃 − 𝜃0

 = 4.00
rad

s

2

+ 2 2.00
rad

s2
21.0 rad = 100

rad2

s2
,

𝜔 = 100 = 𝟏𝟎
𝒓𝒂𝒅

𝒔

© 2016 Pearson Education, Inc.

See Example 9.2 in your text

The rear wheel of the stationary 

bicycle is magnified for clarity

Remember counterclockwise rotation is positive



9.3 Relationship Between 

Linear

            and Angular Quantities 

Length of Arc:  𝑠 = 𝑟𝜃

Average Speed: 𝑣𝑎𝑣 =
∆𝑠

∆𝑡
=

∆(𝑟𝜃)

∆𝑡
= 𝑟

∆𝜃

∆𝑡
= 𝑟𝜔𝑎𝑣

Instantaneous Tangential Velocity:

 𝑣 = lim
∆𝑡→0

∆𝑠

∆𝑡
= 𝑟 lim

∆𝑡→0

∆𝜃

∆𝑡
= 𝑟𝜔

 Direction: tangent to the circle.

Average Tangential Acceleration:

 𝑎𝑡𝑎𝑛,𝑎𝑣 =
∆𝑣

∆𝑡
=

∆(𝑟𝜔)

∆𝑡
= 𝑟

∆𝜔

∆𝑡
= 𝑟𝛼𝑎𝑣

Instantaneous Tangential Acceleration:

 𝑎𝑡𝑎𝑛 = lim
∆𝑡→0

∆𝑣

∆𝑡
= lim

∆𝑡→0

∆(𝑟𝜔)

∆𝑡
= 𝑟 lim

∆𝑡→0

∆𝜔

∆𝑡
= 𝑟𝛼

 

Radial Acceleration: 𝑎𝑟𝑎𝑑 =
𝑣2

𝑟
=

(𝑟𝜔)2

𝑟
= 𝜔2𝑟

 

Magnitude of Acceleration: 𝑎 = 𝑎𝑟𝑎𝑑
2 + 𝑎𝑡𝑎𝑛

2

∆𝜃
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Figure 9.4

Merry-go-round

Compare the 

angular velocities



On a merry-go-round, you decide to put your 

toddler on an animal that will have a small angular 

velocity. Which animal do you pick?

a) Any animal; they all have the same angular 

velocity.

b) One close to the hub.

c) One close to the rim.

© 2016 Pearson Education, Inc.

Clicker question



Rotational Motion

vtan= same = r11= r22 

Tooth spacing is the same 
2pr1 
N1

2pr2 
N2

=

2

1

=
N2

N1



© 2016 Pearson Education, Inc.

A. a faster linear speed and a faster angular speed.

B. the same linear speed and a faster angular speed.

C. a slower linear speed and the same angular speed.

D. the same linear speed and a slower angular speed.

E. none of the above.

Q9.5

Compared to a gear tooth on the 

rear sprocket (on the left, of 

small radius) of a bicycle, a gear 

tooth on the front sprocket (on 

the right, of large radius) has

Clicker question



Example 9-3

Given; 𝑤 = 10
𝑟𝑎𝑑

𝑠
; ∝= 50

𝑟𝑎𝑑

𝑠
; 𝑟 = 0.8𝑚

𝑎𝑡𝑎𝑛 = 𝑟 ∝= 0.8 ∗ 50 = 40
𝑚

𝑠2

𝑎𝑟𝑎𝑑 =
𝑣2

𝑟
= 𝑤2𝑟 = 102 ∗ 0.8 = 80

𝑚

𝑠2

Now;

a = a = arad
2 + atan

2 = 89
m

s2

Energy in rotational motion and moment of inertia;

෍

𝑖

1

2
𝑚𝑖𝑣𝑖

2 = ෍

𝑖

1

2
𝑚𝑖𝑟𝑖

2𝑤2 =
1

2
෍

𝑖

𝑚𝑖𝑟𝑖
2

𝐼

𝑤2 =
1

2
𝐼𝑤2

𝐾 =
1

2
𝐼𝑤2  →  𝐼 = ෍

𝑖

𝑚𝑖𝑟𝑖
2

𝐼 = 𝑐𝑀𝑅2  →  𝐼 = 𝑀𝑅2



9.4 Kinetic Energy of Rotation and Moment of Inertia 

How to calculate the kinetic energy of rotating rigid body?

Cut the rigid body into many small pieces, A, B, C, …

Kinetic Energy for piece A:

 𝐾𝐴 =
1

2
𝑚𝐴𝑣𝐴

2 =
1

2
𝑚𝐴(𝑟𝜔)𝐴

2 =
1

2
𝑚𝐴𝑟𝐴

2𝜔2

Total Kinetic Energy:

 𝐾 =
1

2
𝑚𝐴𝑟𝐴

2𝜔2 +
1

2
𝑚𝐵𝑟𝐵

2𝜔2 +
1

2
𝑚𝐶𝑟𝐶

2𝜔2 + ⋯

                =
1

2
(𝑚𝐴𝑟𝐴

2 + 𝑚𝐵𝑟𝐵
2 + 𝑚𝐶𝑟𝐶

2 + ⋯ )𝜔2

                =
1

2
𝐼𝜔2       

  

Define the Moment of Inertia:

 𝐼 = 𝑚𝐴𝑟𝐴
2 + 𝑚𝐵𝑟𝐵

2 + 𝑚𝐶𝑟𝐶
2 + ⋯



Energy in rotational motion and 

moment of inertia:

𝐾𝑟 = ෍

𝑖

1

2
𝑚𝑖𝑣𝑖

2 = ෍

𝑖

1

2
𝑚𝑖𝑟𝑖

2𝑤2 =
1

2
෍

𝑖

𝑚𝑖𝑟𝑖
2

𝐼

𝑤2 =
1

2
𝐼𝑤2

With moment of Inertia; 

For large 𝐾𝑟 it is better faster  and not so much  heavier 

Example:  fly wheel.

𝐾 =
1

2
𝐼𝑤2  →  𝐼 = 𝑀𝑅2 = σ𝑖 𝑚𝑖𝑟𝑖

2[kg m2]

For general shapes; (c - factors)

𝐼 = 𝑐𝑀𝑅2

Hula hoop = all point on 

the circumference 𝑟𝑖 = 𝑅 



Example 9.6: An abstract sculpture

𝐼 = 𝑚𝐴𝑟𝐴
2 + 𝑚𝐵𝑟𝐵

2 + 𝑚𝐶𝑟𝐶
2

a) For axis BC, disks B and C are on axis;

𝑟𝐵 = 𝑟𝐶 = 0
𝐼𝐵𝐶 = 𝑚𝐴𝑟𝐴

2 = 0.3 ∗ 0.4 2 = 0.048 𝑘𝑔𝑚2

b) For axis through A perpendicular to the plane;

𝑟𝐴 = 0
𝐼𝐴 = 𝑚𝐵𝑟𝐵

2 + 𝑚𝐶𝑟𝐶
2 = 0.1 ∗ 0.5 2 + 0.2 ∗ 0.4 2 = 0.057 𝑘𝑔𝑚2

c)   If the object rotates with 𝑤 = 4
𝑟𝑎𝑑

𝑠
 around the axis through A 

perpendicular to the plane, what is 𝐾𝑟𝑜𝑡?

𝐾𝑟𝑜𝑡 =
1

2
𝐼𝐴𝑤2 =

1

2
∗ 0.057 ∗ 0.4 2 = 0.46 𝐽

Note: In rotational motion the moment of 

inertia depends on the axis of rotation. It is not 

like a mass a constant parameter of an object

Example 9.6, an abstract sculpture, on page 269



Table 9.2 Finding the moment of inertia for common shapes
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You want to double the radius of a rotating solid sphere while 

keeping its kinetic energy constant. (The mass does not change.) 

To do this, the final angular velocity of the sphere must be

A. four times its initial value.

B. twice its initial value.

C. the same as its initial value.

D. half of its initial value.

E. one-quarter of its initial value.

Q9.6
Clicker question
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The three objects shown here 

all have the same mass and the 

same outer radius. Each object 

is rotating about its axis of 

symmetry (shown in blue). All 

three objects have the same 

rotational kinetic energy. Which 

object is rotating fastest?

Q9.7

A. Object A is rotating fastest.

B. Object B is rotating fastest.

C. Object C is rotating fastest.

D. Two of these are tied for 

fastest.

E. All three rotate at the same 

speed.

A. B. C.

Clicker question

B

𝐾 =
1

2
𝐼𝑤2
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Objects A, B, and C all have the same mass, all have the same 

outer dimension, and are all uniform.

Q-RT9.1

A. B. C.

Rank these objects in order of their moment of inertia about an 

axis through its center (shown in blue), from largest to smallest.

Clicker question

BCA
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Objects A, B, and C all have the same mass, all have the same 

outer dimension, and are all uniform. Each object is rotating about 

an axis through its center (shown in blue). All three objects have 

the same rotational kinetic energy.

Q-RT9.2

A. B. C.

Rank these objects in order of their angular speed of rotation, 

from fastest to slowest.

Clicker question

ACB



Work-Energy Theorem:

 𝑊𝑡𝑜𝑡𝑎𝑙 = 𝐾𝑓 − 𝐾𝑖

Example 9.7 on page 271

A cable unwinding from a winch.

Find: (a) Final angular velocity .

 (b) Final speed of cable

Solution:

Work done W = Fd = (9.0 N)(2.0 m) = 18 J

Apply the work-energy theorem

 W = Kf – Ki = 
1

2
𝐼𝜔𝑓

2 −
1

2
𝐼𝜔𝑖

2 = 
1

2
𝐼𝜔𝑓

2

 (18 J) =
1

2
IA𝜔𝑓

2 = 
1

2
[

1

2
 (50 kg)(0.060 m)2]𝜔𝑓

2 = (0.045 kg)𝜔𝑓
2 

  𝜔f = 20 rad/s

Speed of cable  𝑣 = 𝑟𝜔f = (0.06 m)(20 rad/s) = 1.2 m/s

Courtesy of Wenhao Wu
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A thin, very light wire is wrapped 

around a drum that is free to rotate. 

The free end of the wire is attached 

to a ball of mass m. The drum has 

the same mass m. Its radius is R and 

its moment of inertia is I = (1/2)mR2. 

As the ball falls, the drum spins.

At an instant that the ball has 

translational kinetic energy K, what 

is the rotational kinetic energy of the 

drum?

Q9.8

A. K             B. 2K            C. K/2             D. K/4

E. none of these

Clicker question
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9.41.  Set Up:  The speed   of the weight is related to    of the cylinder by ,R =  where 0 325 mR =    Use 

coordinates where +y is upward and i 0y =  for the weight. f ,y h= −  where h is the unknown distance the weight 

descends. Let 1 50 kgm =   and 3 25 kgM =    For the cylinder 21

2
I MR=   

Solve:  (a) Conservation of energy says i i f fK U K U+ = +   i 0K =  and i 0U =   f fU mgy mgh= = −   

2
2 2 2 2 2

f

1 1 1 1 1 1 1

2 2 2 2 2 2 4
K m I m MR m M

R
   

     
= + = + = +          

 

21 1
0

2 4
m M mgh

 
+ − =  

 

2 2

2

1 1 1 1
(1 50 kg) (3 25 kg) (2 50 m/s)

2 4 2 4
0 664 m

(1 50 kg)(9 80 m/s )

m M

h
mg

   
+   +        

= = = 
 

 

(b) 
2 50 m/s

7 69 rad/s
0 325 mR





= = = 


 



Problem 9.31: 

a) Each mass is at a distance r =
2∗(0.4)2

2
=

0.4

2
 from the axis.

𝐼 = σ 𝑚𝑟2 = 4 ∗ 0.2 ∗
0.4

2

2
= 0.064 𝑘𝑔𝑚2   (axis is through center)

b) Each mass is r = 0.2m from the axis.

𝐼 = 4 ∗ 0.2 ∗ 0.2 2 = 0.032 𝑘𝑔𝑚2 ( 𝒂𝒙𝒊𝒔 𝒊𝒔 along the line AB)

c) Two masses are on the axis and two are 
0.4

2
 from the axis.

𝐼 = 2 ∗ 0.2 ∗
0.4

2

2

= 0.032 𝑘𝑔𝑚2

    (axis  is alongCD)

 

The value of I depends on the location of the axis.



Rotational Motion

Problem 9.34: 

𝐼𝑜 = 𝑚𝑟𝑖𝑚𝑅2 +
8

3
𝑚𝑠𝑝𝑜𝑘𝑒𝑅2 = 0.193 𝑘𝑔𝑚2



Which object will win?

All moments of inertia in the previous table can be expressed as;

 𝐼𝑐𝑚 = 𝛽𝑀𝑅2 = 𝑐𝑀𝑅2 (c - number)

Compare;

a)   For a thin walled hollow cylinder 𝛽 = 1

b) For a solid cylinder 𝛽 =
1

2
 etc.

Conservation of energy;

0 + 𝑀𝑔ℎ =
1

2
𝑀𝑣2 +

1

2
𝐼𝑤2 =

1

2
𝑀𝑣2 +

1

2
𝛽𝑀𝑅2(

𝑣

𝑅
)2=

1

2
(1 + 𝛽)𝑀𝑣2

𝒗 =
𝟐𝒈𝒉

𝟏 + 𝛽

Small 𝛽 bodies wins over large 𝛽 bodies.

Example 9.10 Race of rolling objects



Rotational Motion

9.49.  Set Up:  Apply Eq. (9.19). For an object that is rolling without slipping we have cm .v R=  

Solve:  The fraction of the total kinetic energy that is rotational is 
2

cm
2 2 2 2 2
cm cm cm cm cm

(1/2) 1 1

(1/2) (1/2) 1 ( / ) / 1 ( / )

I

Mv I M I v MR I



 
= =

+ + +
 

(a) 2
cm (1/2) , so the above ratio is 1/3I MR=   

(b) 2
cm (2/5)I MR= so the above ratio is 2/7.  

(c) 2
cm (2/3)I MR= so the ratio is 2/5.  

(d) 2
cm (5/8)I MR= so the ratio is 5/13  

Reflect:  The moment of inertia of each object takes the form 
2.I MR=  The ratio of rotational 

kinetic energy to total kinetic energy can be written as 
1

.
1 1/ 1



 
=

+ +
 The ratio increases as 

increases. 

K=
1

2
𝑀𝑣2 +

1

2
𝐼𝑤2

On a horizontal surface , what fraction of the total kinetic energy is 

rotational?

a) a uniform solid cylinder . b) a uniform sphere  c)a thin walled hollow sphere 

d)a hollow cylinder with outer radius R an inner radius R/2

Small 𝛽 bodies win over large 𝛽 bodies



Rotational Motion

Use coordinates where +y is upward. Take the origin at the final position of the stone, so for the stone f 0y =  and 

i 2 50 my =    The cylinder has no change in gravitational potential energy. The cylinder has rotational kinetic energy and 

the stone has translational kinetic energy. Let m be the mass of the stone and let M be the mass of the cylinder. For the cylinder 

21

2
I MR=   The speed  of the stone and the angular speed   of the cylinder are related by R =   

Solve:  Conservation of energy says i i f fU K U K+ = +   i 0K =  and f 0,U =  so i fU K=   The conservation of energy 

expression becomes 2 2
i

1 1

2 2
mgy m I = +   

2 2 2 21 1 1 1
( / ) ,

2 2 2 4
I MR R M  

 
= =  

 so 2 2
i

1 1

2 4
mgy m M = +  and 

( ) ( ) ( )( ) ( )

( )

222
i

2 2

2 3 00 kg 2 9 80 m/s 2 50 m 3 50 m/s2 2
18 0 kg

3 50 m/s

m gy
M





    − −
 

= = = 


 

9.40    A light string is wrapped around the outer rim of a solid 

uniform cylinder of diameter 75 cm that can rotate about an axis 

through its center. A stone is tied to the free end of the string .When 

the string is released from rest the stone reaches a speed of 3.5m/sec 

after having fallen 2.5 m What is the mass of the cylinder??



Rotational Motion

Compute the 

magnitude of 

the tangential 

and radial 

acceleration

a) at the start

b) b after it 

turned 

through 

60and120 

degrees



Rotational Motion

*9.47.  Set Up:  The ball has moment of inertia 2
cm

2

3
I mR=   Rolling without slipping means cm R =   Use coordinates 

where +y is upward and 0y =  at the bottom of the hill, so i 0y =  and f 5 00 my h= =    

Solve:  (a) Conservation of energy gives i i f fK U K U+ = +   i 0,U =  f 0K =  (stops)  Therefore i fK U=  and 

2 2
cm cm

1 1

2 2
m I mgh + =   

2
2 2 2cm

cm cm

1 1 2 1

2 2 3 3
I mR m

R


 

   
= =      

 so 2
cm

5

6
m mgh =  

2

cm

6 6(9 80 m/s )(5 00 m)
7 67 m/s

5 5

gh


 
= = =   

and 

cm 7 67 m/s
67 9 rad/s

0 113 mR





= = = 


 

(b) 
2 2 2

rot cm

1 1 1
(0 426 kg)(7 67 m/s) 8 35 J

2 3 3
K I m = = =   =   

Reflect:  Its translational kinetic energy at the base of the hill is 
2
cm rot

1 3
12 52 J

2 2
m K = =    Its total kinetic energy is 

20.9 J. This equals its final potential energy: 
2(0 426 kg)(9 80 m/s )(5 00 m) 20 9 J.mgh =    =   



Rotational Motion

9.50.  Set Up:  Only gravity does work, so other 0W =  and conservation of energy gives i i f fK U K U+ = +    

Let f 0,y =  so f 0U =  and i 0 750 my =    The hoop is released from rest so i 0K =   2 2
f cm cm

1 1

2 2
K M I = +   

cm R=   For a hoop with an axis at its center, 
2

cmI MR=   

Solve:  Conservation of energy gives i fU K=   
2 2 2 2 2 2

f

1 1
( ) ,

2 2
K MR MR MR  = + =  so 

2 2
iMR Mgy =   

2
i (9 80 m/s )(0 750 m)

33 9 rad/s
0 0800 m

gy

R


 
= = = 

  



Rotational Motion

*9.45.  Set Up:  Since there is rolling without slipping, cm .v R=  The kinetic energy is given by Eq. (9.19). We have 

3 00 rad/s =   and 0 600 m.R =   For a hoop rotating about an axis at its center we have 2.I MR=  

Solve:  (a) cm (0 600 m)(3 00 rad/s) 1 80 m/sR = =   =   

(b) 2 2 2 2 2 2 2
cm cm cm cm

1 1 1 1
( )( / ) (2 20 kg)(1 80 m/s) 7 13 J

2 2 2 2
K M I M MR R M    = + = + = =   =   

Reflect:  For the special case of a hoop, the total kinetic energy is equally divided between the motion of the center of 

mass and the rotation about the axis through the center of mass. 



Rotational Motion

9.51.  Set Up:  Solve this problem using energy conservation: .K U = −  The change in potential energy of the cart is 

,U Mg y =   where the total mass is 150 0 kg 4(45 0 kg) 330.0 kgM =  +  =  and the vertical displacement of the cart is 

given by (16 0 m)sin20 5.472 m.y = −   = −  The kinetic energy of the cart consists of its translational kinetic energy 

and the rotational kinetic energy of its four identical wheels. The initial kinetic energy is zero, so 

2 21 1
4 .

2 2
K M I 

 
 = +   

 The moment of inertia of each wheel is that of a solid cylinder: 21

2
I mr= with m = 45.0 kg. 

Solve:  

( )( )

2 2

2
2 2

2

2

1 1
4

2 2

1 1
2

2 2

2

1

2 2

9.8 m/s 5.472 m
9.2 m/s

1 45.0 kg

2 330.0 kg

Mg y M I

M mr
r

M
m

Mg y g y

M m
m

M

 








 
−  = +   

   
= +       

 
= +  

−  − 
=  =

+ +

− −
= =

+

 

Reflect:  If we ignore the rotational energy of the wheels, we would get 2gh = = 22(9 80 m/s )(5.472 m) 10 m/s =  for 

the speed of the cart at the bottom of the slope. The actual speed of the cart is only slightly slower than this due to the relatively 

small moment of inertia of the wheels. 



You are preparing your unpowered soapbox 

vehicle for a soapbox derby down a local hill. 

You're choosing between solid-rim wheels and 

wheels that have transparent hollow rims. Which 

kind will help you win the race?

a) Either kind; it doesn't matter.

b) The solid-rim wheels.

c) The transparent  hollow-rim wheels.

© 2016 Pearson Education, Inc.

Clicker question

hollowsolid



Conservation of Energy:   𝑈𝑖 + 𝐾𝑖 = 𝑈𝑓 + 𝐾𝑓

y

o

Example 9.8 on page 269

Given: M, R, m, and h

Find v and  just before hitting the water

Solution:

As the bucket descends, it potential energy decreases 

and is converted to kinetic energy.

Apply the conservation of energy:

        𝑚𝑔ℎ + 0 + 0 = 0 +
1

2
𝑚𝑣2 +

1

2
𝐼2

        =
1

2
𝑚𝑣2 +

1

2
(

1

2
𝑀𝑅2)(

𝑣

𝑅
)2 =

1

2
(𝑚 +

1

2
𝑀)𝑣2

𝑣 =
2𝑔ℎ

1+𝑀/2𝑚
    and  =

1

𝑅

2𝑔ℎ

1+𝑀/2𝑚

Note: free fall velocity for M<<<m; all energy goes to kinetic and not rotation

Conservation of energy in a well



9.5 Rotation about a   

            Moving Axis

How to calculate the kinetic energy of a rigid body that is 

rotating and also having a linear motion?

𝐾 =  𝐾𝑙𝑖𝑛𝑒𝑎𝑟 + 𝐾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =
1

2
𝑀𝑣𝑐𝑚

2 +
1

2
𝐼𝑐𝑚𝜔2

Example 9.9 on page 272

Given: Given M, R, and h

Find: Velocity of the center of mass vcm

Solution:

Ui = Mgh, Ki = 0,  Uf = 0

 𝐾𝑓 =  𝐾𝑐𝑚 + 𝐾𝑟𝑜𝑡 =
1

2
𝑀𝑣𝑐𝑚

2 +
1

2
𝐼𝑐𝑚𝜔2

       =
1

2
𝑀𝑣𝑐𝑚

2 +
1

2
(

1

2
𝑀𝑅2)(

𝑣𝑐𝑚

𝑅
)2=

3

4
𝑀𝑣𝑐𝑚

2

Apply the conservation of energy: 𝑀𝑔ℎ + 0 = 0 +
3

4
𝑀𝑣𝑐𝑚

2

𝑣𝑐𝑚 = 4𝑔ℎ/3

y

o

Courtesy of Wenhao Wu



𝐼 =
2

5
𝑀𝑅2 =

2

5
∗ 14𝑘𝑔 0.12𝑚 2 = 0.0806 𝑘𝑔𝑚2

𝐿 = 𝐼𝑤 = 0.0806 𝑘𝑔𝑚2  ∗ 6.0 rad = 0.484 kg
𝑚2

𝑠

𝐾 =
1

2
𝐼𝑤2 =

1

2
𝐿𝑤 =

1

2
0.484 kg

𝑚2

𝑠
∗ 6 rad = 1.45 J

Calculate the angular momentum and kinetic energy of a solid uniform sphere with a 

radius of 0.12 m and a mass of 14.0 kg if it is rotating at 6.00 rad/s about an axis 

through its center 



© 2016 Pearson Education, Inc.

Two identical uniform solid spheres are attached 

by a solid uniform thin rod. The rod lies on a line 

connecting the centers of mass of the two spheres. 

Axes A, B, C, and D are in the same plane as the 

centers of mass of the spheres and of the rod.

Q-RT9.3

A

B

C

For the combined object of 

two spheres plus rod, rank the 

object’s moments of inertia 

about the four axes, from 

largest to smallest.

D

Clicker question

CBAD



Rotational Motion

Relationship between Linear and Angular Quantities

R
R

R

R
a

Ra

Ra

R

Rl

l 
R

l
 

2
22

rad

tan

tan

(
 (3)

 (2)

)(

 (1)














===

=

==

=

=

==







=

)

d

d

d

d

v

v

  v

v

tt

t

t    like   t )(

atan

arad



r = 0.3 
m α=0.6 rad/s2

ω0 = 0

Find the magnitude of the tangential component of acceleration (atan), the radial 
component of acceleration (arad), and the total acceleration (a) of a point on its rim..
a. At the start
b. After it has turned through 60o

c. After it has turned through 120o



r = 0.3 
m α=0.6 rad/s2

ω0 = 0

Find the magnitude of the tangential component of acceleration (atan), the radial 
component of acceleration (arad), and the total acceleration (a) of a point on its rim..
a. At the start
b. After it has turned through 60o

c. After it has turned through 120o



r = 0.3 
m α=0.6 rad/s2

ω0 = 0

Find the magnitude of the tangential component of acceleration (atan), the radial 
component of acceleration (arad), and the total acceleration (a) of a point on its rim..
a. At the start
b. After it has turned through 60o

c. After it has turned through 120o



85 cm

11 m/s

m = 2.25 kg

75 m

a) How fast is the wheel moving at the bottom of the slope (assume no 
slipping occurred)?

b) How much Kinetic Energy does the wheel have when it reaches the 
bottom?



85 cm

11 m/s

m = 2.25 kg

75 m

a) How fast is the wheel moving at the bottom of the slope (assume no 
slipping occurred)?

b) How much Kinetic Energy does the wheel have when it reaches the 
bottom?
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