Chapter 15: Thermal Properties of Matter
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Chapter 15  Thermal Properties of Matter

e To understand the mole and Avogadro's number.

e To understand equations of state.

e To study the Kinetic theory of ideal gas.

e To understand heat capacity.

e To learn and apply the first law of thermodynamics.
e To study thermodynamic processes.

e To understand the properties of an ideal gas.




Goals

* Relate the macroscopic properties to the
microscopic properties

* Gain an understanding of the thermal
properties of matter

e Consider various phases of matter: gas, liquid,
and solid and conditions under which they
occur



15.1 The Mole and Avogadro’s Number

 Because atoms and molecules are so small, any practically
meaningful amount of a substance contains a huge number of
atoms or molecules. Therefore, it is more convenient to use a
rather huge measuring unit to “count” their numbers.

 The Avogadro’s number, N, = 6.022x10% molecules/mole,
IS such a measuring unit.

« 1 mole of a pure chemical element or compound contains
N, = 6.022x1023 identical atoms or molecules.

* The molar mass (M) is the mass of 1 mole of a pure chemical
element or compound. It 1s equal to the Avogadro’s number
multiplying the mass of an atom or molecule (m).

M = Nsm

 The total mass of a system containing n moles of a substance:
Meotar = MM

 The total number of particles in n moles of a substance:
Neotar = 1Ny

Example:
Carbon-12 (120)
m=1.99x102¢g

(a) The molar mass
M = NAm = 120 g

(b) The total mass of 1.5
moles of 1ZC
mtotal == TLM - 180 g

(c) Number of atoms in 1.5
moles of 1ZC
Niotar = Ny
= 9.03x10%




Avogadro's Number

A number to describe a set count of
atoms, like "dozen" is a standard set
for eggs.

« Because atoms are so small, it must
be a huge number: 6.022 x 1073,

« To put that number in perspective,
count all the stars. That number
would be approximately 100 billion
(1.0 x1011).

It would take a trillion (1.0x 101?)
Milky Way galaxies to contain as
many stars as there are particles in a
mole. Again, because atoms are tiny.
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mole each of sever

familiar substances ||

Macroscopic parameters: pressure, volume,
temperature, and mass.

Microscopic parameters: speeds, kinetic energies,
momentum and masses of individual molecules.

ldeal gas can relate the macroscopic and
microscopic parameters.

Phases of matters: gas, liquid, and solid.

" fan H _ My 1.008-L
ass of an H-atom: myg = N4 = 65102340
g mol
= 1.67x107%% ——
atom
g
MO2 (16*2)@

Mass of an 0,-atom: m,, =

= 53x107%*

Ny 6x1023

atom
mol

g
atom

Use the mole as the unit to describe the quantity of
material (rather than mass).

1 mole (1 mol) is the amount of a substance
that contains as many molecules or atoms
as there are inside 0.012kg of carbon 12

Avogadro’s number N, = 6.022x1023
molecules/mole. Molar mass M of a
substance is the mass of 1mol.
M= Ny - m
mass of a single molecule
Mrotqr = N * M (Total mass=number of mol X molar mass)




Which has more atoms: a one gram sample of carbon-12, or a one gram
sample of carbon-13?

a) carbon-12
b) carbon-13




15.2 Equation of State

i’[’e\mperature (T)

Torch to
heat the gas e

e Imagine that we can work on the device on the right. L | vorume N
; . ¥4 b
e \We may take different actions and expect some results: ﬁ ) \E\
If we heat it up, temperature (T) rises and the volume (V) o \\\\

expands; if we compress it, pressure (p) increases; if we (M oral @ ]
add more gas (n) into the system, pressure (p) increases o Ao orn) |

prvem—

and volume expands (V), etc. CHinigge b | Pressure
the chamber (»)
e Question: how are these physical quantities (T, p, V, n, i

etc.)
related to each other for a given system?

p

e The equation of state: a mathematical equation relates these :
physical quantities to each other. These physical quantities :
are also known as state variables or state coordinates. Gas source to change

the amount of gas




| Temperature (T )

Equations of state with state variables

Torch to
heat the gas

~

Ideal gas equation:
N J
#" | Volume = =—m3 =
V(lv) pV =nRT [J —m molmol*K K]

(0 Amount|_ R = 831452 0.08206 L + —1"

\ = [ - . = " * .,
(Z“,’,‘;l .@ ) mol * K mol x K
Piston to--.... T | 8

change b | Pressure & Mtotal Miotal pM
the chamber () G \\ pV = RT - p = =

volume @« - M V RT

Remember m;,¢q; = n+ M and M = molar mass

For a constant mass (number of moles) of an ideal gas
p1Vi _ P2V

Gas source to change T T.
. 1 2
the amount of gas

= nR = constant
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STP (standard temperature and pressure):
0°C = 273K and 1 atm = 1.013x10°Pa

How large is a container to keep 1mole of gas at STP?

_J
_ nRT _ 1mol * 8.314m0 x 273K

Lx K 0.0224m3 s 00k _ 041
= 0. * = .
» 1.013x105Pa 3




The Ideal-Gas Equation or Ideal-Gas Law

e For most gases, their state variables very closely obey a simple relationship:
pV = nRT.

e R = 8.3145 J/(mol*K) is the ideal-gas constant and is a universal constant for all
gasses.

e T is measured in Kelvin (K).
e The above relationship is known as the ideal-gas equation, or, the ideal-gas law.
e \We may re-write the ideal-gas equation, replacing n by m,...,/M,

_ M¢otal
pV = Tetal gy

e \We may write the ideal-gas equation in terms of the density of the gas, p = m,,/V,

__ pM
P=%r




PV-diagrams

Each curve rel?resents pressu.re as a function of Isotherm = (same temperature)
volume for an ideal gasjat a single temperature. ) i
IA’ T Wi curve representing pV-behavior
| and is directly proportional to T at a specific temperature
| \ (Boyle’s law).
BES Iy>T3>T1T,>T,
\ \ ) X L %
\ \ T
: T3
\ b T, Critical temperature = temperature
g e, | 1 above which material does not
= -V separate into two phases. It goes
smoothly without a phase transition.
Not ideal gas
T,>T;>T,>T,>T,
p Above the critical temperature T,
' there is no liquid-vapor phase
transition.
_Below T, the material The area under a pV-curve represents the

condenses to liquid as it is work done by the system during a change
compressed. Critical

In volume equivalent to heat transfer and
Pressure

T, the change of the internal energy.
\ :_——;\ TcT
— 42

Liquid—vapor phase
equilibrium region




. At T and p values above

PT-phase diagram

@ (b) p the critical point, the
. material properties change
Solid field Liquid field : v SPRET
maralal o materaan s 0o A graph which indicates what phase
ol glg M a phase change. occurs at a particular p and V
P ST < ® Critical
At the triple ... & :-SE 'o‘\c" A point . ]
P, i &%Q(,{a‘i‘*@@ @« (Line a) = horizontal = constant pressure
iquid, anc & — ] ] ) ] .
vapor coexist O O Vapor field reducing T yields: vapor, liquid, and solid phases
D S“\)\““‘a:‘ < o Tr t.plte (material all  (5)
(soW 1’03”’ vapor)
0 Ty T, T, S : _
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increasing p yields: vapor, liquid, and solid phases

TABLE 15.1 Triple-point data

Substance Temperature, K Pressure, Pa
Hydrogen 13.8 0.0704 x 10°
Neon 24.57 0.432 x 10°
Nitrogen 63.18 0.125 % 10°
Oxygen 54.36 0.00152 X 10°
Ammonia 195.40 0.0607 X 10°
Carbon dioxide 216.55 5.17 X 10°
Water 273.16 0.00610 x 10°

Copyright ©2007 Pearson Education, Inc. publis
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TABLE 15.2 Critical-point data

(Line s) = horizontal = constant
pressure sublimation or direct transfer
of solid to liquid (no vapor phase).
Example: dry ice €-> carbon dioxide

Triple point = all three phases coexist at a

Substance

Critical temperature, K

Critical pressure, Pa

unigue pressure-temperature combination.

Helium (3 He)
Hydrogen
Nitrogen
Oxygen
Ammonia
Carbon dioxide

Water

53
333
126.2
154.8
405.5
304.2
647.4

2.29 X 10°
13.0 X 10°
33.9 x 10°
50.8 X 10°
112.8 x 10°
73.9 X 10°
221.2 X 10°

Critical point= distinction between liquid and
gas disappears (properties change gradually

Copyright © 2007 Pearson Educ
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15.3 Kinetic Theory of an Idea Gas

e The question: how are measurable macroscopic variables related to microscopic
properties of the atoms and molecules?

e The idea gas: We will treat atoms or molecules as point particles undergoing rapid
elastic collisions with each other and the walls of the container in the given volume.
The potential energies due to all the forces are ignored.

e The process is to apply Newton’s laws to establish the relationship between
microscopic and macroscopic quantities.

e The goals are to understand: the pressure of an ideal gas;
the ideal-gas equation;
the temperature of an ideal gas;
internal energy of an ideal gas;
the heat capacity of an ideal gas;
etc.




Kinetic Molecular Theory of an Ideal Gas

Pressure (the impulse of molecule collision with container wall)
(a) momentum change in one collision event: 2m| v, |
(b) total momentum change in time interval At:

AP = (2) (%) (Al a0 @mlv, ) = MAmte

74
2
(c) Force on the wall is: E, = AAPtx _ NAwa
2
(d) Pressure on the wall is: p = % — N";”" ...... (15.6)

(e) Molecules with a distribution of velocities? Take average.
_ Fx _ Nm@)ay _ N[1 2 _ 12
P=u ="y _V[Sm(v )a”]_vlsK”]’
where K;. = N [%m(vz)av] IS the total kinetic energy.

(f) Compare with the ideal-gas equation: pV = nRT, we have
the total kinetic energy of the gas molecules,

Vix = _|U.\'| =

Molecule
g before collision
= Ul_\‘ — U_\.

3 Molecule after

\\ l] o
. collision

|
B
; <l H
c
S
|
=N

)$ IU_l-fZ.\r
=7

\.U.-N

r

-:: J \
W‘Jll £ Cylinder:
, " volume Alv /At

All molecules are assumed to have the same

magnitude [v,| of x velocity.



The Boltzmann Constant

3

e The total kinetic energy of all the particles in an ideal gas is K;, = SNRT.

e |t relates the microscopic properties to measurable macroscopic quantities.

e The kinetic is independent of the mass of the atoms or molecules.

e The average Kkinetic energy per atom or molecule is

3
1 K¢y —NnRT

_1 2y _ _2 _3/R
Kap = 2m(v?) = Ker =20 _ 3 (R,

e Define the Boltzmann constant

=R 8.314 J/(mol-K)

_ -23
Na  6.022x1023/mole 1.381 X 107°% J/K,

then, Kay = 5m@0)qp= kT oo (15.8)

which is independent of the details of the particles, such as the mass.
e \We can re-write the ideal-gas equationto pV = nRT = n(kNy)T,
or pV =NkT ................... (15.9)

Gas constant R =8.3144598 J/ (mol K )



4 steps:

1. Find A p /collision Molecular model of an ideal gas
2. Find # of collisions . : . . f
3. Find force/area Aim: derive pressure in the molecular picture \
4. Find p and relate to ideal gas law Atoms sizes = 1019 m

_ Chloride Largest molecule sizes = 106 m

/” ions

In gas molecules are in motion.

around centers.

In liquids molecules vibrate with
more freedom in movement.

In solids molecules vibrate v

Elastic collision of a
molecule with the wall
After collision

>
—

‘ Uy = val

Note: Parallel

Before collision Velocity
Does not
Y% Change!

X

Copyright
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silicon 1. Total change of momentum Kinetic molecular

theory of an ideal gas: .
assume all molecules to have the same velocity
AP = m|vy| — (—mvy) = 2mv,

2. The number of collisions with wall (area A)
during At is
1N
# = Ev (AlvxlAt)
NAmv,2At

1N
APy, = EV(AlvxlAt)(szx) =

Small ‘p’ = pressure o MR NAmw? _ooap o
Large ‘P’ > momentum 7 a ~ v "’ @ MaT
Remember Newton’s law

Cylinder;
volume A |v,|At

-V Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley



4 expression for pressure
F _ Nmwvy? 2 : : L.
p=,=—r-2pV=Nmr,” | AimThe average translational kinetic energy

of a molecule depends onlyon T, notp orV
Express 1,2 in terms of the average in v? of all molecule

2 _ 2 2 2 _ 2 Cotinet -2 _1-7
Vay” = Uy, “ + v, “+ v, °=3v, = (no distinction between X, y, and z) 2v,° = ~

|74 L N mv? N 2 (1 72) - K

= —-INmvo = —(-mv = -

PY =30 32 32
number of molecules average tran__slational kinetic Total tér)gg;‘sgl;twnal

energy of a single molecule

Compare; pV = nRT ==K, — K, ==nRT

Venus is just like in “Goldie
Locks” ,too hot and Mars is too
cold but Jupiter is just right .

Earth and
Jupiter to scale

Note: H, exceeds the escape speed. Hydrogen
as the lightest gas has an average speed at a
given temperature than other heavier gases.

Number of
molecules

Boltzmann Constant:

2Gmg
Rg

Escape speed v, =

K1+U1=K2+U2

surface infinity
of earth

%mv2 + (—G mZEEm) =040

— Kty _ 3nRT _ 3nRT _ 3 R —23 J
K = == =-——==-kT 2 k =—=1.38x10
molecular — N T 3 N T 20N, 2 N4 molecule-K




You heat a sample of air to twice its original temperature in a constant
volume container. The average translational kinetic energy of the
molecules is;

Half the original value.
Unchanged.

Twice the original value.
Four time the original value.

COw>




Molecular Speeds in an Ideal Gas

The average kinetic energy per atom or molecule:
1 3
Koy = Em(vz)av = EkT,

from which we obtain the root-mean-square velocity

3kT
Vrms = (vz)av = !
where m is the mass of an atom or molecule.

Since kN, = R and mN, = M, we may re-write,

3RT

Urms M

Note: (V) gy F (V)2 =0

Maxwell-Boltzmann
Distribution
of Molecular Speed

Number of

molecules
A




Example for Molecular speeds in an ideal gas

Kav(molcule)zimvjvzﬁkT N ,vz =\/3/’<_T=\/3RT
2 2 rms av m _M

Consider O, as residual gas at 27°C. Find K, and K;. =2 27°C=300K

per MCule per mole
1 2 3 3 -23 -21
Kay = 5mvgy = EkT = E(1.38x1o )(300K) = 6.21x10721]
3 3
K = 5MRT = E(1mol) (8.3) (300K) = 3740J
Number of [m({l.K ]

molecules

[——]
k=1.38x10"23 Lok




Problem 15-68

(a) Find v, of the hydrogen atom for H in the sun (T,,,=5800K)

un

1 3 3kT 3 % 1.38x10723] « 5800K . m km
—MVUSps = =kT = Vpppg = = = 1.2x10*—= 12—

2 2 1.67x10~%7kg S S

(b) What is the mass of an atom that has half the speed?

VpmsVM = V3KT = constant = Vs 1/My = Vyms 24/Mo
1

Vrms2 = E Vrms,1

m, = 4m, = 4 % 1.67x10727 = 6.68x10~27kg



Constant-Volume Molar Heat Capacity of an Ideal Gas

Consider an ideal gas with its volume fixed, when heat energy Q is added to or
remove from the ideal gas, the total kinetic energy K;, = %nRT Is changed by the

same amount based on the conservation of energy (because, for an ideal gas, the
potential energies due to all the forces are ignored):

3 3
Q = MK,y = 5 nRAT = n(; R)AT.

Therefore, the constant-volume molar heat capacity is
Cy = >R =125 J/(mol+K)

Note:

(a) The constant-volume molar heat capacity Cy, given above is correct for
monatomic gases and is independent of the details of the atoms, such as
atomic masses.

(b) For gases of diatomic molecules, Cy = gR = 20.8 J/(mol*K)




15.4 The Molar Heat Capacities

Note: In Chapter 14, we defined the specific heat as the heat energy required to raise the
temperature of 1 kg of a substance by 1 °C (or 1 K).

Now, we are going to define a quantity called the molar heat capacity. Its meaning is similar
to that of the specific heat, but it is defined in different units.

Question: How much heat energy Q is needed to raise n moles of a substance by a
temperature AT?

The answer is: Q = nCAT

Note:

(a) The heat energy is proportional to n and AT.

(b) The proportionality constant C is called the molar heat capacity. It is the heart energy
needed to raise the temperature of 1 mol of a substance by 1 °C (or 1 K).

(c) Cisin general material-dependent. Yet, it has some simple forms for an ideal gas.

(d) The molar heat capacity has the units of J/(mol<K).

(e) Q is defined positive if it is transferred into the system, and, negative otherwise.

(f) Relationship with the specificheatc: € = Mc (M is the molar mass)




(a) Translational motion

Independent ¥

axes of mlalmn

m 1 \,
-"I’

(b) Rotational motion

(¢) Vibrational motion
Copyright @ 2007 Pearson Education, Inc. put

Diatomic: =2 Cy = ER

\ /

w i) = —)

@ -=»x
m;

Heat capacities
Specific heat capacity (previous chapter)

Q = my,:qicAT = c=specific heat capacity [J/kg*K] (c(water) = 1C—al)

Molar heat capacity (novel fundamental level)
J

= nCAT C
Q=n ~ mol * K

] = molar heat capacity

Molar mass
Molar heii_ﬁ
capacity C=M C)

Related to specific heat capacity c
(small letter) by comparison with;

number '\
_ . of 7:'};,0185 Specific heat capacity
Q = MeotarcAT = M n  cAT
molar
mass TABLE 15.3 Molar heat capacities
; . . . f
Change in translational kinetic energy S TS
Ype ol gas vils Illll
3 e — S S
—_ 3 Monatomic He 12.47
AKer 2 nRAT = nCyAT = —nRAT Ar 12.47
Q — nC AT 2 Diatomic H_- 2042
M- 20.76
Energy gas (mono- atomlc) Cy = —R o, 110
] (W] 20,85
— Polyatomic O, 28.46
[831‘1 mol = K ] A ol k o A

m Ak Py

I Poly-atomic: more degrees of freedom I

A diatomic molecule can move in three ways: translation, rotation, and vibration. At
lower temperature; only translation and rotation degrees are active and not vibration



15.6 Thermodynamics Processes

AU=0Q-W

 Adiabatic: no heat transfer in or out of the system
Q=0
AU = —-W

* Isochoric: no volume change
V=constant or AV =0 or W=0

AU = Q
* Isobaric: no pressure change.
p = constant
W =pWl,—V)
* Isothermal: no temperature change.
T = constant or AU =0
Q=W

Isochoric
P T2 < Ta; W=0
A
Pat- 3 Isobaric
T3 = Ta
Isothermal
T,=T,;AU =0
l
V
¢ % \Adiabatic
I <IT;0=90

This process is
isobaric because
the pressure
remains constant.

>V

Work = Area =
p(V, = V) >0

)\ E—
Y
< EEEEEEREe

38
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15.5 The First Law of Thermodynamics

It sets the relationship between the change in the internal
energy AU, work done by the system W, and heat transfer.

Q w
— —

AU=0Q—-W

Note: (@) Q is positive if added to the system; negative if removed from the system.
(b) W is positive if it is done by the system on the surrounding; negative
otherwise.




Work done during volume change

Work: W = FAx = pAAx = pAV
Work done at constant pressure: wW=plV,-V,)

When the pressure is not a constant:
W = plAV + Do AV + pgAV + .-,
which is the area under the pV diagram

p

A
System A _% - .1
Y —> an |
| |
I |
PA | (=) !
| g

\ A ofv, v

Constant pressure

p Work is positive in this case

{8
e

pik - 1 because the volume increases,
meaning that the system
does work on the
surroundings.

Prf-p———————==
|
|
|

ol v, V,

(a) pV diagram for a system undergoing a
change in volume with varying pressure

P2

)

(b) The curve in (a) treated as a series of
small constant-pressure intervals



Work is the area under the pV diagram

The volume decreases (V, < V) and the
system does negative work.

P
A

2

P ro—=
I
:(W<m
I
I

@~

ol v, V,

Constant pressure

>~V

P

')

|

(W<0),

|
|
|
|
|
|
| >y

0,

V) Vi

Varying pressure

Work done at constant temperature

v
W = nRTIln—
Vi




A 1 3
D1 & .
Three options
- for getting
Work is the area under the pV Y from point 1
diagram. to point 2
It depends on the exact path that the Pl —&
system follows. 4: i
-V
o| v, v,
(a)
! § !
\ 4
Pl—lQ - 03 pl—lo Pl—l
|
’ |
| Y Y |
: W = Area :
I |
P2 - — -, p2—4q > ® Py | W = Area o)
| | | WA | | .
>/ > =
ol v, V, o v, V, ol Vv, v
(b) (c) (d)



Example 15.10 on page 483

Given:

(1) fromato b, Q,, = 150 J of heat is added to the system
(2) From b to d, Q,4; = 600 J of heat is added to the system

Find: (1) internal energy change fromato b
(2) internal energy change fromatobtod
(3) total heat added to system fromatoctod

Solution:
(1) Fromatob wW=0 AU,y = Qqp — W =150

(1) From b to d, constant pressure,
Wya = (Vg4 — V) = (8.0x10%)(5.0x10-3 — 2.0x103) = 240

AUabd = Qabd — Wabd = (150 + 600) — (O + 240) =510J
3) Qaca = AUgca + Waca = AUgpa + W
— 510 + (3.0x10%)(5.0x10?-2.0x10%) = 510 + 90 = 600 J

8.0 X 10°Pa |-——-Ce "
\

3.0 X 10*Pa |-——— -¢—>—o
(Il |C

| |

< | |

0120 X 1073 m? !

5.0 ><'0*3 m>

The First Law
AU=0Q—-W




Energy, heat, and work in a thermodynamic system:
The first law of Thermodynamics

Surroundings
(environment)

Heat is positive when  Work is positive when it

it enters the system, is done by the system,
negative when it negative when it is done
leaves the system. on the system.
Surroundings
(environment) :
v v
0<0 W <0

System

© 2012 Pearson Education, Inc.
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Work done during volume changes

Copyright ® 2007 Pearson Education, Inc. publishing as Addison Wesley -
p Work is positive in this case

1 because the volume increases,

meaning that the system

surroundings.
P2 -

(a) pV diagram for a system undergoing a
change in volume with varying pressure

Copyright

”"‘.li The work W done is equal
to the area under the
pV curve

Paf---t-=

Vi
0 pAVl pAV3 pAVS pAV7'
pAV, pAV, pAV

| 4

(b) The curve in (a) treated as a series of
small constant-pressure intervals
Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

Thermodynamics is the study of
Energy, heTat and Work

_ (sign convection)
Thermodynamic system = exchanges heat with environment

The volume decreases (V, < V;), meaning that
the surroundings do work on the system.
Thus, work is negative.

does work on the A

Constant pressure

Surroundings
(environment)

T »

Q added work done 0 4 0 System .

Heat is positive when Work is positive when it
it enters the system, is done by the system,
negative when it negative when it is done
leaves the system. on the system.

p

A2
1 P -e j Surroundings
@ ' (environment)

b 1 0<0 wW<0
o
(W < 0) <=
> > Syst

Vl V 0 Vz Vl V ys am

Varying pressure
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g as Addison Wesley

Work done during volume changes

When gas expands, it pushes on the boundary
surfaces and does positive work.
W=FAx=pé4_§=pAV
AV
Assume p is constant;

W =pV, - V1)
But usually it is not constant;
W = plAVl + pZAVZ vhe aeas



Isothermal (constant temperature) expansion
(Particular case)

1 3

Some options
for getting

\ Y from point 1
to point 2

iy
T
Y

W = nRT ln% (without proof)
1

by

.. I
ke > Positiveiwork
(a) [
p 1
1 3

n /No Work

1
1
1
1
1
;Zv ' | Consider a series of paths, in such a way that each
! | can be plotted on a pV-diagram - they all require
h ' | different work (areas under the path)
P
|
|
I
1
P2-4| W = Area 12 !
o[ v, i :
() :
! Work done depends not only on the initial and
| ! final points, but also on the path taken.
; :
I |
: 12 1
ol v, v,V ;

(d) 1
Copyright © 2007 Pearson Education, Inc. pullishing as Addison Wesley
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p (atm)

Work done in a cyclic process |

15.39 note:
For a constant volume process: W=0
For a constant pressure process: W=p*AV |

o

2

0 2 A 6 8

1 atm = 1.013x10°Pa, 1Liter=103m3
The work done is positive when the volume increases and negative when the
volume decreases.

Find W for each process in the cycle;
122: W = pAV = 2.5atm * 1.013x10
22>3:. W =0since AV =0

3->4: W = pAV = 0.5atm * 1.013x10° ;—fn (2L — 8L)x1073 mTB = —3.0x10%]

4->1: W =0 since AV =0
Weycle = 1.5x103] + 0 + (—=3.0x10%)) + 0 = 1.2x103J

5 22 —2 (8L — 2L)x1073 = = 1.5x10°%]

The area enclosed by the cycle (energy) is;
3

m Pa
2atm * 6L = 12.0L-atm * 1073 — % 1.013x10° — = 1.2x103]
L atm



Heat transfer during volume changes
Slow controlled isothermal expansion Rapid uncontrolled expansion

State 1 State 2 State 1 State 2
L: & Insulation
3 —
[—-’] Breakable Vacuum =
Gas at =— iti Gas at-|
L partition
300 K S5.0L L 300K | I~ SO0L .
20L
e — T‘:' 3 = | —
(5 300 K ‘ (;; 300 K
- i = _

(a) System does work on piston; hot plate
adds heat to system (W > 0 and Q > 0).

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

(b) System does no work; no heat enters or
leaves system (W = 0 and Q = 0).

Free expansion=uncontrolled expansion

Experiments have shown that during free expansion,
there is no change in temperature. Heat also depends
on the path like work.

First law of thermodynamics

7 T 7
Added Change of Work done

heat Iinternal energy against surroundings

Experiments show U=f(p,V,T)
U2—U1=AU=Q—W
independ;;: of path



Example

One gram of water (1cm?3) becomes 1671cm? steam when boiled at
J

constant pressure of latm. The heat of vaporization is Ly = 2'256X106k_g

Compute: (a) the work done by the water when it vaporizes
(b) the increase in internal energy

(a) W = p(V, — V;) = 1.013x105Pa (1671x10~®m3 — 1x10~%m3) = 169 ]
(b)Q = mL, = 1g * 2256é = 2256 ]

First law of thermodynamics: Q = AU + W
AU =Q — W = (2256 — 169)] = 2087 ]

Why is AU > W ??
Not all heat goes into internal energy but some heat does work on the
water molecules pulling them apart when water transforms into steam.




Thermodvynamic processes

Isochoric
A
Pil- 3 Isobaric
T3 = Ta
Isothermal
T4 = Ta;
ol v, e b
T} <T; Q=0
4
A
1 2

 This process is
Work = Area = isobaric because
p(V, — V;) >0  the pressure

 remains constant.

0 v, v, Y

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

Constant pressure

4 processes:
No heat transfer = Adiabatic
Constant volume = isochoric
Constant pressure = isobaric
Constant temperature = isothermal

Isothermal:>AT = 0,AU =0 W=Q
Adiabatic: 2> Q=0

AU=U,—U; =Q—-W=-W

]
0

Expanding system  W>0, AU<O0
Compressing system W<0, AU>0

Increasing internal energy is often happen with increasing temperature T

Example: combustion engine; isochoric - constant volume

Uz—UleU:Q—W
|l

0
All the energy added as heat increases energy U

Example: heating a gas in a closed volume isobaric - constant pressure

All three quantities AU, W, , and Q change
W=pV,-Vy) Q=nC,AT AU=Q-W

isobaric - constant pressure: none of the quantities AU,, W, , and Q is zero.



Example 15.9 An isothermal expansion
State 1 State 2 Example 15.9

- _ V, J
1 7 W = nRTIny? = 3mol + 83—

k k —_— 7

n = 3.0 mol ) . .
Since, temperature is constant and we consider

-~ T=300K an ideal gas the change in internal energy is
zero - all the heat entering goes into work

V,=40L V,=50L

right © 2007 Pearson Education, Inc. publishis Addison Wesle
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Example 15.10 A series of thermodynamical processes

(due to |_ts Importance repeated ) Consider paths in a pV diagram: in path ab 150J of heat are added to the
R - Y ob, A system , in bd. 600J of heat are added. Find
a. Internal energy change in ab ?
b. Internal energy change in abd ?

A c. Total heat added in acd ?
10T e a) No volume change > W,, =0, AU,, = Q4 = 150]
a ¢ b) bd at constant pressure
| e Wyq = p(V, — V) = 8x10*Pa(5 — 2)x10™5m3 = 240
020 x103m’ Wiotar = Wap + Wpq = 0+ 240 = 240
5.0 X 10~ m? Qaba = Qap + Qpa = 150 + 600 = 750

AUabd: Qabd - Wabd = 750 - 240 == 510]
c) Because AU is independent of the path AU,.4= AUgpa
Total work for path acd :
Wiotar = Wae + Weg = p(V, — V1) + 0 = 3x10*Pa(5 — 2)x1073m3 =90



Problem on Heat Capacities

a) How much heat does it take to increase the temperature of 2.5moles of an ideal
gas (monoatomic) from 25°C to 55°C, if the gas is at constant volume.

b) How much heat is needed if the gas is diatomic rather than monoatomic?

c) Sketch in a pV-diagram of these processes.

a) Q= 2. 5moli(8. )301{ — 935/
b) Q = 5/2 935 = 1560]
C) p
I|'.|'|... .-I:
i
[ S ;
1 -7

| isochoric

Isochoric = when the temperature increases at
constant volume the pressure increases




‘C/Zcfer - @ge&tiom '3

You compress a sample of air slowly to half its original volume,
keeping its temperature constant. The internal energy of the gas.

A. Decreases to half its original value.
B. Remains unchanged.
C. Increases to twice its original value.



15.7 Properties of an Ideal Gas

AU=0Q—-W

We learned in Section 15.4 that the constant-volume molar heat capacity for a
monatomic ideal gas is

Cy =R =125 J/(mol+K)

Question: What is the molar heat capacity for a monatomic ideal gas under a constant
pressure? [ p = constant; W =plV, —V,) =pAV]

Q = AU + W = nCyAT + pAV

Since pV =nRT, or pAV = nRAT

We have
Q = nCyAT + pAV = nCyAT + nRAT = n(Cy + nR)AT = nC,AT.

The constant-pressure molar heat capacity is C,=C/+R= gR




5, U,
T, U,

Properties of an ideal gas:Heat capacities and the adiabatic process

Constant-volume
process, gas does

Pob—— no work: Q = AU
Constant-pressure Molar heat capacity depends on condition under which heat is added.
process, gas does
Pit——-— work: Q = AU + W . ) .
I Cy= heat is added to raise temperature Q = AU under constant volume, but letting
: : pressure go up.
[ |
0 v, ¥ . . .
.y C,= heat is added while gas expands Q@ = AU + W but keeping pressure constant.
Adiabatic process a¢ — b:
p Q=0AU=-W
T . .
Adiabatic: Q=0
C
p V) =p,V) = constant>y ==
-An adiabatic curve at any Cv
Pa-——\—94 point is always steeper
than the isotherm passing . -
through the same point. ISOthermaI . AT_O
; p1Vi = poV2 = nRT
Py T TABLE 15.4 Molar heat capacities of gases at low pressure
w |
- é ‘I/ 5 Typeofgas Gas Cy(J/(mol-K)) C,(J/(mol-K)) C,—Cy(J/(mol-K)) ¥y
¢ ’ Monatomic He 12.47 20.78 8.31
11 Tnsnlation Ar 12.47 20.78 8.31
I Diatomic H, 20.42 28.74 8:32
N, 20.76 29.07 8.31
S ‘Breakable | Walls of container 0, 20.85 29.17 8.31
~ partition CcO 20.85 29.16 8.31
do not move Polyatomic ~ CO, 28.46 36.94 8.48
| Ideal gas at SO, 31.39 40.37 8.98
r temperature T H,S 25.95 34.60 8.65
Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

Free expansion: When the partition is broken the gas
expands freely into the vacuum region. Internal energy
stays constant and temperature does not change

1.67
1.67
1.41
1.40
1.40
1.40
1.30
1.29
1.33

J

mol.K

Note: C, = C, + R where R = 8.314



P

e

L, U
T, By

Constant-volume
process, gas does

) — no work: Q = AU

Constant-pressure
process, gas does

F——— work: O = AU + W

Careful with

Molar heat capacity depends on condition under
which heat is added.

Cy= heat is added to raise temperature Q = AU
under constant volume, but letting pressure go
up. W=0 no work, since volume is constant.

C,= heat is added while gas expands Q = AU +

W but keeping pressure constant. . W>0 work
performed, since volume is expanding

J

mol.K

C, = Cy + R where R = 8.314

constant pressure equations W=pAV = nR AT

AU = nCyAT,if at constant pressure replace C,=C,-R=3/2R for a mono atomic gas



The gas shown in figure is in a completely insulated rigid container.
Weight is added to the frictionless piston, compressing the gas. As this
Is done,

A. The temperature of the gas stays the
same because the container is
Insulated.

B. The temperature of the gas
Increases because heat is added to
the gas.

C. The temperature of the gas
Increases because work is done on
the gas.

D. The pressure of the gas stays the

same because the temperature of the

gas Is constant.




Problem 15 - 75

p (atm)

A

2.0

0.50

A

b

(a) What is the volume at c ?

I
0.20

V(L)

T, = T, for states b and c
pV =nRT — ppV, =pcVc

Note: ab isochoric (constant volume)
bc isothermic (constant temperature)
ca isobaric (constant pressure)

For;
AT =0-> AU =0
Q=AU+W

Cy = %R (diatomic gas)

_ 7o J
C, = Cy + R = 2R (R=8.315—)

AU = nCyAT

}Q =W = nRTln://—C (isotherm)
b

pV-diagram for 0.004mole of ideal H, gas
temperature does not change during path bc.

2
VC=Vb<p—b>=O.2*—=O.8L

D¢ 0.5

(b) Find temperature of the gas at points ab and c

P

(0.5 atm)(1.013x105=2)(0.2x10~3m?)

at

V
Ta:paa_

nR

0.004mol*8.315

N
7 = 305K (Note: p, = W)

mol.K

T_Tb

vV, =V, - forstatesaand b -2 % = nLR = constant » %+ ==

Continued on next slide

= Tc

Pa Pb

Pp

2
=T,— =305 *—=1220K

Pa 0.5



(c) How much heat went into or out of the gas during segments ab, ca and bc ?

ab: Q = nC,AT = n%RAT (0. 004mol)

ca: Q = nCyAT = nZRAT = (0. 004mol) =—-107]
0.8L

bc: Q = W = nRT = nRTan—b — (0.004mol) 8.315m(12201( 1n(—)) = +56]

—305)K = +76]

(d) Find the change in the internal energy of this hydrogen during segments ab, ca and
bc ?

ab: AU = nC,AT = ngRAT (0. 004mol) —305)K = 476
ca: AU = p(V, — V) + nZ RAT
7
= 0.5+ 1.013 » 105(0.8 — 0.2) * 10~ + (0.004mol) -  8.315 mO]l (305 — 1220)K

=-76]
bc: AT =0 - AU =0

Note: the net energy change in a cycle is zero. AU;ptq1 = +76 +0—-76 =0
r ('<lll11)

b
2.0 —

factors of unity
1 atm = 1.013x10° Pa

0.50 |- — - 1m3=103L
V(L)

o 0.20



70. II Helium gas expands slowly to twice its original volume, doing 300 ] of work in the
process. Find the heat added to the gas and the change in the internal energy of the gas if

the process is (a) isothermal and (b) adiabatic.

15.70. Set Up: For an isothermal process, AT =0. For an adiabatic process, Q =0.
Solve: (a) AT=0. AU=0and Q=W=300J
(b) Q=0. AU=-W=-300J



71. II A cylinder with a piston contains 0.250 mol of ideal oxygen at a pressure of

2.40 x 10° Pa and a temperature of 355 K. The gas first expands isobarically to twice its
original volume. It is then compressed isothermally back to its original volume, and finally
it is cooled isochorically to its original pressure. (a) Show the series of processes on a pV
diagram. (b) Compute the temperature during the isothermal compression. (c¢) Compute
the maximum pressure. (d) Compute the total work done by the piston on the gas during

the series of processes.

_— - P - .. A —_— - P —

15.71. Set Up: PV =nRT. For the isobaric process, W = p AV = nR AT. For the isothermal process,
W =nRT In [\i\
)
Solve: (a) The pV diagram for these processes is sketched in the figure below.

P

(b) Find T,. For process 1— 2, n, R, and p are constant so \T7 = £R = constant. L T and
n

1 2
T,= Tl{\v%j = (355 K)(2) = 710 K

(c) The maximum pressure is for state 3. For process 2 — 3, n, R, and T are constant. p,V, = psV; and
Ps= P, (\Q} = (2.40 x 10° Pa)(2) = 4.80 x 10° Pa
V3

(d) process 1— 2: W = p AV =nR AT = (0.250 mol)(8.315 J/mol - K)(710 K — 355 K) =738 K.

process 2—>3: W =nRTIn (\%
2

process 3—>1 AV =0and W =0.
The total work done is 738 J + (—1023 J) =—285 J. This is the work done by the gas. The work done on the gas is 285 J.

J = (0.250 mol)(8.315 J/mol - K)(710 K)In[%j =-1023J.



52. I A volume of air (assumed to be an ideal gas) is first cooled without changing its volume
and then expanded without changing its pressure, as shown by the path abc in Figure
15.355. (a) How does the final temperature of the gas compare with its initial
temperature? (b) How much heat does the air exchange with its surroundings during the
process abc? Does the air absorb heat or release heat during this process? Explain. (c¢) If
the air instead expands from state a to state ¢ by the straight-line path shown, how much

heat does it exchange with its surroundings?

Figure 15.35

p (Pa)
3.0 X 10°F
2.0 X 10°F
1.0 X 10°F

1 ] | 3
ol 0.020.040.06 " (M)

15.52. SetUp: Use pV =nRT to calculate T./T,. Calculate AU and W and use AU =Q—W to obtain Q. For path
ac, the work done is the area under the line representing the process in the pV diagram.

5 3
Solve: (a) J¢ = PeVe _ (1.0><105 3)(0.060 m3)
T PaVa (3.0x10° J)(0.020 m®)
(b) Since T, =T,, AU =0for process abc. For ab, AV =0and W, =0. For bc, p is constant and Wy, = pAV

= (1.0x10° Pa)(0.040 m®) =4.0x10% J. Therefore, W, =+4.0x10%J. Since AU =0, Q=W =+4.0x10%J.

=1.00. T,=T,.

4.0x10° J of heat flows into the gas during process abc.

(c) W = %(3.0 x10° Pa+1.0 x10° Pa)(0.040 m®) = +8.0x10% J. Q.. =W, =+8.0x10° J.

Reflect: The work done is path dependent and is greater for process ac than for process abc, even though the initial
and final states are the same.



49. 11 Figure 15.3218 shows a pV diagram for an ideal gas in which its pressure tripled from a
to b when 534 ] of heat was put into the gas. (a) How much work was done by the gas
between a and b? (b) Without doing any calculations, decide whether the temperature of
this gas increased, decreased, or remained the same between a and b. Explain your
reasoning. (c¢) By how much did the internal energy of the gas change between a and b?
Did it increase or decrease? (d) What is the temperature of the gas at point b in terms of its

temperature ata, T, ?

Figure 15.32

p (atm)

A
b
0.75F——————- a
|
|
-V (m?)
0 0.025

15.49. Set Up: The pV diagram shows that V is constant during the process.
Solve: (a) W =0 since AV =0.

(b) pV=nRT and T = [:—R) p. When p increases while V and n are constant, then T must increase. In fact, if p triples

the absolute temperature T triples.
(c) AU=Q-W. Q=+534J and W =0 gives AU =+534 J. The internal energy increased by 534 J.
(d) Ty, =3T,, as derived in part (b).



Stirling Engine

The Stirling Engine is a piston that,
when heated or cooled, increases or
decreases the pressure/energy of the
gas trapped inside. This causes the
gas molecules to apply more pressure
on the piston. This in turn increases the
pressure on the opposite side of the
piston, and the cycle repeats. As long
as heat is allowed to flow (be it from a
cold or hot source) the gas pressure
variance will drive the piston.

To set up the demonstration, place the
beaker of water on the hot plate and
the stirling engine on the beaker. Turn
the hot plate on to 300C. It will take
approximately 21 minutes for the water
to boil. If the stirling engine does not
begin to spin on its own, give it a small
spin.



Crookes Radiometer

The radiometer
consists of black
and white vanes
inside a partial
vacuum. When
heated via a light
bulb, the vanes
begin to spin (Black
vanes leading, or
clockwise in the
photo) due to
thermal
transpiration as well
as gas pressure
differential.
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