
Chapter 15: Thermal Properties of Matter 

10^11 stars in our Milky Way



● To understand the mole and Avogadro's number.

● To understand equations of state.

● To study the kinetic theory of ideal gas.

● To understand heat capacity.

● To learn and apply the first law of thermodynamics.

● To study thermodynamic processes.

● To understand the properties of an ideal gas.

Chapter 15 Thermal Properties of Matter



Goals

• Relate the macroscopic properties to the 
microscopic properties

• Gain an understanding of the thermal 
properties of matter

• Consider various phases of matter: gas, liquid, 
and solid and conditions under which they 
occur



• Because atoms and molecules are so small, any practically 

meaningful amount of a substance contains a huge number of 

atoms or molecules. Therefore, it is more convenient to use a 

rather huge measuring unit to “count” their numbers.

• The Avogadro’s number, NA = 6.022×1023 molecules/mole,

    is such a measuring unit.

• 1 mole of a pure chemical element or compound contains    

NA = 6.022×1023 identical atoms or molecules.

• The molar mass (M) is the mass of 1 mole of a pure chemical 

element or compound. It is equal to the Avogadro’s number 

multiplying the mass of an atom or molecule (m).

   𝑀 = 𝑁𝐴𝑚
• The total mass of a system containing n moles of a substance:

   𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑀
• The total number of particles in n moles of a substance:

   𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑁𝐴

Example:

Carbon-12 ( 6
12𝐶)

m = 1.99×10−23 g

(a) The molar mass

      𝑀 = 𝑁𝐴𝑚 = 12.0 g

(b) The total mass of 1.5 

moles of 6
12𝐶

      𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑀 = 18.0 g

(c) Number of atoms in 1.5 

moles of 6
12𝐶

      𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑛𝑁𝐴

       = 9.03×1023

15.1 The Mole and Avogadro’s Number



Avogadro's Number

• A number to describe a set count of 

atoms, like "dozen" is a standard set 

for eggs.

• Because atoms are so small, it must 

be a huge number: 6.022   1023.

• To put that number in perspective, 

count all the stars. That number

would be approximately 100 billion 

(1.0   1011).

• It would take a trillion (1.0   1012)

Milky Way galaxies to contain as 

many stars as there are particles in a 

mole. Again, because atoms are tiny.
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1 mole each of several 

familiar substances

Macroscopic parameters: pressure, volume, 

temperature, and mass.

Microscopic parameters: speeds, kinetic energies, 

momentum and masses of individual molecules.

Ideal gas can relate the macroscopic and 

microscopic parameters.

Phases of matters: gas, liquid, and solid.

Use the mole as the unit to describe the quantity of 

material (rather than mass).

1 mole (1 mol) is the amount of a substance 

that contains as many molecules or atoms 

as there are inside 0.012kg of carbon 12

Avogadro’s number 𝑁𝐴 = 6.022𝑥1023 

molecules/mole. Molar mass 𝑀 of a 

substance is the mass of 1mol.

𝑀 = 𝑁𝐴 ∙ ณ𝑚
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

𝑚𝑇𝑜𝑡𝑎𝑙 = 𝑛 ∙ 𝑀 (Total mass=number of mol X molar mass)

Mass of an H-atom: 𝑚𝐻 =
𝑀𝐻

𝑁𝐴
=

1.008
𝑔

𝑚𝑜𝑙

6𝑥1023𝑎𝑡𝑜𝑚

𝑚𝑜𝑙

= 1.67𝑥10−24
𝑔

𝑎𝑡𝑜𝑚

Mass of an 𝑂2-atom: 𝑚𝑂2
=

𝑀𝑂2

𝑁𝐴
=

(16∗2)
𝑔

𝑚𝑜𝑙

6𝑥1023𝑎𝑡𝑜𝑚

𝑚𝑜𝑙

= 53𝑥10−24
𝑔

𝑎𝑡𝑜𝑚



Which has more atoms: a one gram sample of carbon-12, or a one gram 

sample of carbon-13?

a) carbon-12

b) carbon-13

Clicker – Questions 1



15.2 Equation of State

● Imagine that we can work on the device on the right.

● We may take different actions and expect some results:

   If we heat it up, temperature (T) rises and the volume (V)

   expands; if we compress it, pressure (p) increases; if we

   add more gas (n) into the system, pressure (p) increases

   and volume expands (V), etc.

● Question: how are these physical quantities (T, p, V, n,  

etc.)

   related to each other for a given system?

● The equation of state: a mathematical equation relates these

   physical quantities to each other. These physical quantities 

   are also known as state variables or state coordinates.



Equations of state with  state variables

V volumevvoe of 1mol = 224 l

Ideal gas equation:

𝑝𝑉 = 𝑛𝑅𝑇 [J =
𝑁

𝑚2 𝑚3 = 𝑚𝑜𝑙
𝐽

𝑚𝑜𝑙∗𝐾
𝐾]

𝑅 = 8.3145
𝐽

𝑚𝑜𝑙 ∗ 𝐾
= 0.08206 𝐿 ∗

𝑎𝑡𝑚

𝑚𝑜𝑙 ∗ 𝐾
 

𝑝𝑉 =
𝑚𝑡𝑜𝑡𝑎𝑙

𝑀
𝑅𝑇 →  𝜌 =

𝑚𝑡𝑜𝑡𝑎𝑙

𝑉
=

𝑝𝑀

𝑅𝑇

Remember 𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑛 ∙ 𝑀 and 𝑀 = 𝑚𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠

For a constant mass (number of moles) of an ideal gas
𝑝1𝑉1

𝑇1
=

𝑝2𝑉2

𝑇2
= 𝑛𝑅 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

STP (standard temperature and pressure):

0°𝐶 = 273𝐾 and 1 atm = 1.013𝑥105𝑃𝑎 

How large is a container to keep 1mole of gas at STP?

𝑉 =
𝑛𝑅𝑇

𝑝
=

1𝑚𝑜𝑙 ∗ 8.314
𝐽

𝑚𝑜𝑙 ∗ 𝐾
∗ 273𝐾

1.013𝑥105𝑃𝑎
= 0.0224𝑚3 ∗

1000𝐿

1𝑚3
= 22.4 𝐿



The Ideal-Gas Equation or Ideal-Gas Law

● For most gases, their state variables very closely obey a simple relationship:

    𝑝𝑉 = 𝑛𝑅𝑇.

● R = 8.3145 J/(mol•K) is the ideal-gas constant and is a universal constant for all 

gasses.

● T is measured in Kelvin (K).

● The above relationship is known as the ideal-gas equation, or, the ideal-gas law.

● We may re-write the ideal-gas equation, replacing n by mtotal/M,

     𝑝𝑉 =
𝑚𝑡𝑜𝑡𝑎𝑙

𝑀
𝑅𝑇

● We may write the ideal-gas equation in terms of the density of the gas, ρ = mtotal/V,

    ρ =
𝑝𝑀

𝑅𝑇



Isotherm = (same temperature) 
curve representing pV-behavior 
at a specific temperature

Not ideal gas

Critical
Pressure

PV-diagrams

Critical temperature = temperature 

above which material does not 

separate into two phases. It goes 

smoothly without a phase transition.

The area under a pV-curve represents the 

work done by the system during a change 

in volume equivalent to heat transfer and 

the change of the internal energy.



PT-phase diagram

(Line a) → horizontal = constant pressure 

reducing T yields: vapor, liquid, and solid phases

Critical point= distinction between liquid and 
gas disappears (properties change gradually)

A graph which indicates what phase 

occurs at a particular p and V

(Line b) → vertical = constant temperature 

increasing p yields: vapor, liquid, and solid phases

(Line s) → horizontal = constant 

pressure sublimation or direct transfer 

of solid to liquid (no vapor phase). 

Example: dry ice → carbon dioxide

Triple point = all three phases coexist at a 

unique pressure-temperature combination.



15.3 Kinetic Theory of an Idea Gas

● The question: how are measurable macroscopic variables related to microscopic

    properties of the atoms and molecules?

● The idea gas: We will treat atoms or molecules as point particles undergoing rapid  

   elastic collisions with each other and the walls of the container in the given volume. 

   The potential energies due to all the forces are ignored. 

● The process is to apply Newton’s laws to establish the relationship between 

   microscopic and macroscopic quantities.

● The goals are to understand: the pressure of an ideal gas;

     the ideal-gas equation;

     the temperature of an ideal gas;

     internal energy of an ideal gas;

     the heat capacity of an ideal gas;

     etc.



Kinetic Molecular Theory of an Ideal Gas

Pressure (the impulse of molecule collision with container wall)

   (a) momentum change in one collision event: 2𝑚|𝑣𝑥|
   (b) total momentum change in time interval ∆𝑡:

 ∆𝑃𝑥 =
1

2

𝑁

𝑉
𝐴 𝑣𝑥 ∆𝑡 2𝑚 𝑣𝑥 =

𝑁𝐴𝑚𝑣𝑥
2∆𝑡

𝑉
 

   (c) Force on the wall is:  𝐹𝑥 =
∆𝑃𝑥

∆𝑡
=

𝑁𝐴𝑚𝑣𝑥
2

𝑉

   (d) Pressure on the wall is:  𝑝 =
𝐹𝑥

𝐴
=

𝑁𝑚𝑣𝑥
2

𝑉
 ……(15.6)

   (e) Molecules with a distribution of velocities? Take average.

 𝑝 =
𝐹𝑥

𝐴
=

𝑁𝑚(𝑣𝑥
2)𝑎𝑣

𝑉
=

𝑁

𝑉

1

3
𝑚(𝑣2)𝑎𝑣 =

1

𝑉

2

3
𝐾𝑡𝑟 ,

        where 𝐾𝑡𝑟 = 𝑁[
1

2
𝑚(𝑣2)𝑎𝑣] is the total kinetic energy.

   (f) Compare with the ideal-gas equation: 𝑝𝑉 = 𝑛𝑅𝑇, we have   

         the total kinetic energy of the gas molecules,

  𝐾𝑡𝑟 =
3

2
𝑛𝑅𝑇 ………………………………(15.7)



The Boltzmann Constant

● The total kinetic energy of all the particles in an ideal gas is 𝐾𝑡𝑟 =
3

2
𝑛𝑅𝑇.

● It relates the microscopic properties to measurable macroscopic quantities.

● The kinetic is independent of the mass of the atoms or molecules.

● The average kinetic energy per atom or molecule is  

  𝐾𝑎𝑣 =
1

2
𝑚(𝑣2)𝑎𝑣=

𝐾𝑡𝑟

𝑛𝑁𝐴
=

3

2
𝑛𝑅𝑇

𝑛𝑁𝐴
=

3

2
(

𝑅

𝑁𝐴
)𝑇.

● Define the Boltzmann constant 

  𝑘 =
𝑅

𝑁𝐴
=

8.314 𝐽/(𝑚𝑜𝑙∙𝐾)

6.022×1023/𝑚𝑜𝑙𝑒
= 1.381 × 10−23 𝐽/𝐾, 

   then,  𝐾𝑎𝑣 =
1

2
𝑚(𝑣2)𝑎𝑣=

3

2
𝑘𝑇………….……………..........…(15.8)

   which is independent of the details of the particles, such as the mass.

● We can re-write the ideal-gas equation to 𝑝𝑉 = 𝑛𝑅𝑇 = 𝑛 𝑘𝑁𝐴 𝑇,

   or      𝑝𝑉 = 𝑁𝑘𝑇 ……………….(15.9)

Gas constant R =8.3144598 J/ (mol K )



Molecular  model of an ideal gas

Note: Parallel
Velocity

Does not
Change!

NaCl

silicon

4 steps:

1. Find  p /collision

2. Find # of collisions

3. Find force/area

4. Find p and relate to ideal gas law

Elastic collision of a 

molecule with the wall

Aim: derive pressure in the molecular picture

 Atoms sizes ≈ 10-10 m

 Largest molecule sizes ≈ 10-6 m

In gas molecules are in motion.

In solids molecules vibrate 

around centers.

In liquids molecules vibrate with 

more freedom in movement.

1. Total change of momentum Kinetic molecular 
theory of an ideal gas:

assume all molecules to have the same velocity
∆P = m vx − −mvx = 2mvx

2. The number of collisions with wall (area A) 
during ∆t is 

# =
1

2

N

V
(A|vx|∆t)

∆Px =
1

2

N

V
A vx ∆t 2mvx =

NAmvx
2∆t

V

3.
∆𝑃𝑥

∆𝑡
=

𝑁𝐴𝑚vx
2

𝑉
= 𝐹;  

𝑑𝑃

𝑑𝑡
= 𝑚𝑎 = 𝐹

 Remember Newton’s law

Small ‘p’ → pressure

Large ‘P’ → momentum



4 expression for pressure

Venus is just like in “Goldie 

Locks” ,too hot and Mars is too 

cold but Jupiter is just right .

Aim:The average translational kinetic energy

 of a molecule depends only on T, not p  or V

𝑝 =
𝐹

𝐴
=

𝑁𝑚𝑣x
2

𝑉
 → 𝑝𝑉 = 𝑁𝑚𝑣x

2

Express 𝑣x
2 in terms of the average in 𝑣2 of all molecule

𝑣av
2 = 𝑣𝑥av

2 + 𝑣𝑦av
2 + 𝑣𝑧av

2 = 3𝑣𝑥av
2 (no distinction between x, y, and z) → ҧ𝑣𝑥

2 =
1

3
ҧ𝑣2

𝑝𝑉 =
1

3
ณ𝑁 𝑚 ҧ𝑣2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 

= 𝑁
2

3
(
1

2
𝑚 ҧ𝑣2)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑘𝑖𝑛𝑒𝑡𝑖𝑐
𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

=
2

3
ด𝐾𝑡𝑟

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙
𝑒𝑛𝑒𝑟𝑔𝑦

Compare; 𝑝𝑉 = 𝑛𝑅𝑇 =
2

3
𝐾𝑡𝑟  → 𝐾𝑡𝑟 =

3

2
𝑛𝑅𝑇

Note: H2 exceeds the escape speed. Hydrogen 

as the lightest gas has an average speed at a 

given temperature than other heavier gases.

Boltzmann Constant: 

Escape speed 𝑣𝑎𝑠 =
2𝐺𝑚𝐸

𝑅𝐸

𝐾1 + 𝑈1

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 
𝑜𝑓 𝑒𝑎𝑟𝑡ℎ

= 𝐾2 + 𝑈2

𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦

1

2
𝑚𝑣2 + −𝐺

𝑚𝐸𝑚

2𝐸
= 0 + 0

ഥ𝐾𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 =
𝐾𝑡𝑟

𝑁
=

3

2

𝑛𝑅𝑇

𝑁
=

3

2

𝑛𝑅𝑇

𝑛𝑁𝐴
=

3

2
𝑘𝑇 → 𝑘 =

𝑅

𝑁𝐴
= 1.38𝑥10−23 𝐽

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒∙𝐾
 



You heat a sample of air to twice its original temperature in a constant 

volume container. The average translational kinetic energy of the 

molecules is;

A. Half the original value.

B. Unchanged.

C. Twice the original value.

D. Four time the original value.

Clicker – Questions 2



Maxwell-Boltzmann 

Distribution

of Molecular Speed

Molecular Speeds in an Ideal Gas

The average kinetic energy per atom or molecule:

  𝐾𝑎𝑣 =
1

2
𝑚(𝑣2)𝑎𝑣 =

3

2
𝑘𝑇,

from which we obtain the root-mean-square velocity

  𝑣𝑟𝑚𝑠 = (𝑣2)𝑎𝑣 =
3𝑘𝑇

𝑚
,

where m is the mass of an atom or molecule.

Since 𝑘𝑁𝐴 = 𝑅 and 𝑚𝑁𝐴 = 𝑀, we may re-write,

  𝑣𝑟𝑚𝑠 =
3𝑅𝑇

𝑀
.

Note:  (𝑣2)𝑎𝑣 ≠ (𝑣𝑎𝑣)2 = 0



Example for Molecular speeds in an ideal gas

kTmvmolculeK evav
2

3

2

1
)( 2 == 𝑣𝑟𝑚𝑠 = 𝑣𝑎𝑣

2 =
3𝑘𝑇

𝑚
=

3𝑅𝑇

𝑀

Consider O2 as residual gas at 27oC. Find ต𝐾𝑎𝑣

𝑝𝑒𝑟 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒

 and ด𝐾𝑡𝑟

𝑝𝑒𝑟 𝑚𝑜𝑙𝑒

→ 27oC=300K

𝐾𝑎𝑣 =
1

2
𝑚𝑣𝑎𝑣

2 =
3

2
𝑘𝑇 =

3

2
1.38𝑥10−23 300𝐾 = 6.21𝑥10−21𝐽

𝐾𝑡𝑟 =
3

2
𝑛𝑅𝑇 =

3

2
1𝑚𝑜𝑙 (8.3)

[
𝐽

𝑚𝑜𝑙.𝐾]

300𝐾 = 3740𝐽

k=1.38𝑥10−23 [
𝐽

𝑚𝑜𝑙.𝐾
]



Problem 15-68

(a) Find 𝑣𝑟𝑚𝑠 of the hydrogen atom for H in the sun (Tsun=5800K)

1

2
𝑚𝑣𝑟𝑚𝑠

2 =
3

2
𝑘𝑇 →  𝑣𝑟𝑚𝑠 =

3𝑘𝑇

𝑚
=

3 ∗ 1.38𝑥10−23𝐽 ∗ 5800𝐾

1.67𝑥10−27𝑘𝑔
= 1.2𝑥104

𝑚

𝑠
= 12

𝑘𝑚

𝑠

(b) What is the mass of an atom that has half the speed?

𝑣𝑟𝑚𝑠 𝑚 = 3𝑘𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 → 𝑣𝑟𝑚𝑠,1 𝑚1 = 𝑣𝑟𝑚𝑠,2 𝑚2

𝑣𝑟𝑚𝑠,2 =
1

2
𝑣𝑟𝑚𝑠,1

𝑚2 = 4𝑚1 = 4 ∗ 1.67𝑥10−27 = 6.68𝑥10−27𝑘𝑔



Constant-Volume Molar Heat Capacity of an Ideal Gas

Consider an ideal gas with its volume fixed, when heat energy 𝑄 is added to or 

remove from the ideal gas, the total kinetic energy 𝐾𝑡𝑟 =
3

2
𝑛𝑅𝑇 is changed by the 

same amount based on the conservation of energy (because, for an ideal gas, the 

potential energies due to all the forces are ignored):

𝑄 = ∆𝐾𝑡𝑟 =
3

2
𝑛𝑅∆𝑇 = 𝑛(

3

2
𝑅)∆𝑇.

Therefore, the constant-volume molar heat capacity is

    𝐶𝑉 =
3

2
𝑅 = 12.5 J/(mol•K)

Note:

(a) The constant-volume molar heat capacity 𝐶𝑉 given above is correct for 

monatomic gases and is independent of the details of the atoms, such as 

atomic masses.

(b) For gases of diatomic molecules,  𝐶𝑉 =
5

2
𝑅 = 20.8 J/(mol•K)



15.4 The Molar Heat Capacities

Note: In Chapter 14, we defined the specific heat as the heat energy required to raise the 

temperature of 1 kg of a substance by 1 ºC (or 1 K).

Now, we are going to define a quantity called the molar heat capacity. Its meaning is similar 

to that of the specific heat, but it is defined in different units.

Question: How much heat energy 𝑄 is needed to raise n moles of a substance by a 

temperature ∆𝑇? 

The answer is:  𝑄 = 𝑛𝐶∆𝑇

Note:

(a) The heat energy is proportional to n and ∆𝑇.

(b) The proportionality constant C is called the molar heat capacity. It is the heart energy  

needed to raise the temperature of 1 mol of a substance by 1 ºC (or 1 K).

(c)  C is in general material-dependent. Yet, it has some simple forms for an ideal gas.

(d) The molar heat capacity has the units of J/(mol•K).

(e)  Q is defined positive if it is transferred into the system, and, negative otherwise.

(f) Relationship with the specific heat 𝑐: 𝐶 = 𝑀𝑐 (𝑀 is the molar mass) 



Molar heat 

capacity

Molar mass

Specific heat capacity

Specific heat capacity (previous chapter)

𝑄 = 𝑚𝑡𝑜𝑡𝑎𝑙𝑐∆𝑇 → c=specific heat capacity [J/kg*K] (𝑐(𝑤𝑎𝑡𝑒𝑟) =
1𝑐𝑎𝑙

𝑔∗𝐾
)

Molar heat capacity (novel fundamental level)

𝑄 = 𝑛𝐶∆𝑇 →  𝐶
𝐽

𝑚𝑜𝑙 ∗ 𝐾
= 𝑚𝑜𝑙𝑎𝑟 ℎ𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

Related to specific heat capacity c 

(small letter) by comparison with;

 𝑄 = 𝑚𝑡𝑜𝑡𝑎𝑙𝑐∆𝑇 = ณ𝑀
𝑚𝑜𝑙𝑎𝑟
𝑚𝑎𝑠𝑠

ฎ𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 
𝑜𝑓 𝑚𝑜𝑙𝑒𝑠

𝑐∆𝑇

𝐶 = 𝑀𝑐

Change in translational kinetic energy

ቑ
∆𝐾𝑡𝑟 =

3

2
𝑛𝑅∆𝑇

𝑄 = 𝑛𝐶𝑉∆𝑇
= 𝑛𝐶𝑉∆𝑇 =

3

2
𝑛𝑅∆𝑇

Energy gas (mono-atomic) 𝐶𝑉 =
3

2
𝑅

𝐶𝑉 =
3

2
8.314

𝑅

𝐽

𝑚𝑜𝑙 ∗ 𝐾
= 12.47

𝐽

𝑚𝑜𝑙 ∗ 𝐾

Diatomic: → 𝐶𝑉 =
5

2
𝑅

A diatomic molecule can move in three ways: translation, rotation, and vibration. At 

lower temperature; only translation and rotation degrees are active and not vibration

Poly-atomic: more degrees of freedom

Heat capacities



• Adiabatic: no heat transfer in or out of the system

 𝑄 = 0 

 ∆𝑈 = −𝑊

• Isochoric: no volume change

𝑉 = constant    or     ∆𝑉 = 0     or     𝑊 = 0
 ∆𝑈 = 𝑄

• Isobaric: no pressure change.

 𝑝 = constant

 𝑊 = 𝑝 𝑉2 − 𝑉1

• Isothermal: no temperature change.

  𝑇 = constant  or  ∆𝑈 = 0

 𝑄 = 𝑊

15.6 Thermodynamics Processes

∆𝑈 = 𝑄 − 𝑊



15.30

When te temperature increases at constant volume 

the pressure increases



15.53



JTRnVVpUca ac 76)1220305)(31.8*
2

7
(004.0)10)(2.8(.10*013.1)5.0()2/7()(: 35 =−+−=+−= −

factors of unity 

1 atm = 1.013x10^5 Pa

1 liter = 1000 cm  3  = 10 -3 m  3 



15.5 The First Law of Thermodynamics

It sets the relationship between the change in the internal 

energy ∆𝑈, work done by the system 𝑊, and heat transfer.

𝑄 𝑊
∆𝑈

∆𝑈 = 𝑄 − 𝑊

Note: (a) 𝑄 is positive if added to the system; negative if removed from the system. 

 (b) W is positive if it is done by the system on the surrounding; negative 

otherwise. 



Work done during volume change

Work: 𝑊 = 𝐹∆𝑥 = 𝑝𝐴∆𝑥 = 𝑝∆𝑉

Work done at constant pressure: 𝑊 = 𝑝 𝑉2 − 𝑉1

When the pressure is not a constant:

𝑊 = 𝑝1∆𝑉 + 𝑝2∆𝑉 + 𝑝3∆𝑉 + ⋯ .

 which is the area under the pV diagram

∆𝑉



Work is the area under the pV diagram

Work done at constant temperature

𝑊 = 𝑛𝑅𝑇𝑙𝑛
𝑉2

𝑉1



Work is the area under the pV 

diagram.

It depends on the exact path that the 

system follows.



Example 15.10 on page 483

Given:

(1) from a to b, 𝑄𝑎𝑏 = 150 J of heat is added to the system

(2) From b to d, 𝑄𝑏𝑑 = 600 J of heat is added to the system

Find: (1) internal energy change from a to b

 (2) internal energy change from a to b to d

 (3) total heat added to system from a to c to d

Solution:

(1) From a to b 𝑊 = 0  ∆𝑈𝑎𝑏 = 𝑄𝑎𝑏 − 𝑊 = 150 J

(1) From b to d, constant pressure,

      𝑊𝑏𝑑 = 𝑝 𝑉𝑑 − 𝑉𝑏 = (8.0×104)(5.0×10-3 − 2.0×10-3) = 240 

J

      ∆𝑈𝑎𝑏𝑑 = 𝑄𝑎𝑏𝑑 − 𝑊𝑎𝑏𝑑 = (150 + 600) – (0 + 240) = 510 J

(3) 𝑄𝑎𝑐𝑑 = ∆𝑈𝑎𝑐𝑑 + 𝑊𝑎𝑐𝑑 = ∆𝑈𝑎𝑏𝑑 + 𝑊𝑎𝑐

          = 510 + (3.0×104)(5.0×10-3-2.0×10-3) = 510 + 90 = 600 J 

The First Law

∆𝑈 = 𝑄 − 𝑊



Energy, heat, and work in a thermodynamic system:

            The first law of Thermodynamics



Work done during volume changes
s

The work W done is equal
to the area under the

pV curve

Thermodynamic system = exchanges heat with environment

Thermodynamics is the study of 

Energy, ℎ𝑒𝑎𝑡
↑

𝑄 𝑎𝑑𝑑𝑒𝑑

and 𝑊𝑜𝑟𝑘
↑

𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒
(sign convection)

Work done during volume changes

When gas expands, it pushes on the boundary 

surfaces and does positive work.

𝑊 = 𝐹∆𝑥 = 𝑝 ถ𝐴∆𝑥
∆𝑉

= 𝑝∆𝑉

Assume p is constant;

𝑊 = 𝑝(𝑉2 − 𝑉1)
But usually it is not constant;

𝑊 = 𝑝1∆𝑉1 + 𝑝2∆𝑉2 … … .



Isothermal (constant temperature) expansion
(Particular case)

No Work

Positive work

𝑊 = 𝑛𝑅𝑇 ln
𝑉2

𝑉1
 (without proof)

Consider a series of paths, in such a way that each 

can be plotted on a pV-diagram → they all require 

different work (areas under the path)

Work done depends not only on the initial and 

final points, but also on the path taken.



Work done in a cyclic process
15.39 note:

 For a constant volume process: W=0

 For a constant pressure process: W=p*ΔV

1 atm = 1.013x105Pa,  1Liter=10-3m3

The work done is positive when the volume increases and negative when the 

volume decreases.

Find W for each process in the cycle;

1→2: 𝑊 = 𝑝∆𝑉 = 2.5𝑎𝑡𝑚 ∗ 1.013𝑥105 𝑃𝑎

𝑎𝑡𝑚
8𝐿 − 2𝐿 𝑥10−3 𝑚3

𝐿
= 1.5𝑥103𝐽

2→3: 𝑊 = 0 since ∆𝑉 = 0

3→4: 𝑊 = 𝑝∆𝑉 = 0.5𝑎𝑡𝑚 ∗ 1.013𝑥105 𝑃𝑎

𝑎𝑡𝑚
2𝐿 − 8𝐿 𝑥10−3 𝑚3

𝐿
= −3.0𝑥102𝐽

4→1: 𝑊 = 0 since ∆𝑉 = 0
𝑊𝑐𝑦𝑐𝑙𝑒 = 1.5𝑥103𝐽 + 0 + −3.0𝑥102𝐽 + 0 = 1.2𝑥103𝐽

The area enclosed by the cycle (energy) is;

2𝑎𝑡𝑚 ∗ 6𝐿 ≅ 12.0 𝐿 ∙ 𝑎𝑡𝑚 ∗ 10−3
𝑚3

𝐿
∗ 1.013𝑥105

𝑃𝑎

𝑎𝑡𝑚
= 1.2𝑥103𝐽



Heat transfer during volume changes

Free expansion=uncontrolled expansion

Slow controlled isothermal expansion Rapid uncontrolled  expansion

Experiments show U=f(p,V,T)

𝑈2 − 𝑈1 = ด∆𝑈= 𝑄 − 𝑊 
𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑝𝑎𝑡ℎ

First law of thermodynamics

𝑄
↑

𝐴𝑑𝑑𝑒𝑑
ℎ𝑒𝑎𝑡

=
 

∆𝑈
↑

𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

+
 

𝑊
↑

𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒
𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑠

Experiments have shown that during free expansion, 

there is no change in temperature. Heat also depends 

on the path like work.
Q= heat of an object is not a useful concept, 

better talk about internal energy U



Example  

One gram of water (1cm3) becomes 1671cm3 steam when boiled at 

constant pressure of 1atm. The heat of vaporization is LV = 2.256x106 J

kg

Compute: (a) the work done by the water when it vaporizes

   (b) the increase in internal energy

(a) W = p V2 − V1 = 1.013x105Pa 1671x10−6m3 − 1x10−6m3 = 169 J

(b) Q = 𝑚Lo = 1𝑔 ∗ 2256
J

g
= 2256 J

First law of thermodynamics: 𝑄 = ∆𝑈 + 𝑊
∆𝑈 = 𝑄 − 𝑊 = 2256 − 169 𝐽 = 2087 𝐽

Why  is ∆𝑈 > W ??

 Not all heat goes into internal energy but some heat does work on the 

water molecules pulling them apart when water transforms into steam.



Thermodynamic processes
4 processes: 

 No heat transfer = Adiabatic

 Constant volume = isochoric

 Constant pressure = isobaric

 Constant temperature = isothermal

Isothermal:→∆𝑇 = 0, ∆𝑼 = 𝟎    W=Q

Adiabatic: → Q=0

∆𝑼 = 𝑼𝟐 − 𝑼𝟏 =

 

𝑸
||
𝟎

− 𝑾= -W

Expanding system     W>0, ΔU<0

Compressing system W<0, ΔU>0

Increasing internal energy is often happen with increasing temperature T

Example: combustion engine; isochoric → constant volume

𝑼𝟐 − 𝑼𝟏 = ∆𝑼 = 𝑸 −

 

𝑾
||
𝟎

 All the energy added as heat increases energy U

Example: heating a gas in a closed volume isobaric → constant pressure

All three quantities ΔU1, W1 , and Q change

𝑾 = 𝒑(𝑽𝟐 − 𝑽𝟏) 𝑄 = 𝑛𝐶𝑝∆𝑇 ΔU =Q−W

Constant pressure    isobaric → constant pressure: none of the quantities ΔU1, W1 , and Q is zero.



Example 15.9   An isothermal expansion

Example 15.10  A series of thermodynamical processes  

(due to its  importance repeated ) 

Example 15.9

𝑊 = 𝑛𝑅𝑇𝑙𝑛
𝑉2

𝑉1
= 3𝑚𝑜𝑙 ∗ 8.3

𝐽

𝑚𝑜𝑙. 𝐾
∗ 300𝐾 ∗ 𝑙𝑛

5𝐿

4𝐿
= 1700 𝐽

Since, temperature is constant and we consider 

an ideal gas the change in internal energy is 

zero → all the heat entering goes into work

Consider paths in a pV diagram: in path ab 150J of heat are added to the 

system , in bd. 600J of heat are added. Find

a. Internal energy change in ab ?

b. Internal energy change in abd ?

c. Total heat added in acd ?

a) No volume change → 𝑊𝑎𝑏 = 0, ∆𝑈𝑎𝑏 = 𝑄𝑎𝑏 = 150 𝐽
b)  bd at constant pressure 

𝑊𝑏𝑑 = 𝑝 𝑉2 − 𝑉1 = 8𝑥104𝑃𝑎 5 − 2 𝑥10−5𝑚3 = 240 𝐽
𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑎𝑏 + 𝑊𝑏𝑑 = 0 + 240 = 240 𝐽
𝑄𝑎𝑏𝑑 = 𝑄𝑎𝑏 + 𝑄𝑏𝑑 = 150 + 600 = 750 𝐽

∆𝑈𝑎𝑏𝑑= 𝑄𝑎𝑏𝑑 − 𝑊𝑎𝑏𝑑 = 750 − 240 = 510 𝐽
c) Because ΔU is independent of the path  ∆𝑈𝑎𝑐𝑑= ∆𝑈𝑎𝑏𝑑

Total work for path acd : 

𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑎𝑐 + 𝑊𝑐𝑑 = 𝑝 𝑉2 − 𝑉1 + 0 = 3𝑥104𝑃𝑎 5 − 2 𝑥10−3𝑚3 = 90 𝐽



Isochoric = when the temperature increases at 

constant volume the pressure increases

Problem on  Heat Capacities

a) How much heat does it take to increase the temperature of 2.5moles of an ideal 

gas (monoatomic) from 25oC to 55oC, if the gas is at constant volume.

b) How much heat is needed if the gas is diatomic rather than monoatomic?

c) Sketch in a pV-diagram of these processes.

 a) 𝑄 = 2.5𝑚𝑜𝑙
3

2
8.315

𝐽

𝑚𝑜𝑙.𝐾
𝐶 30𝐾 = 935𝐽          R= 8.315

𝐽

𝑚𝑜𝑙.𝐾
𝐶

 b) 𝑄 =
5/2

3/2
∗ 935 = 1560 𝐽

 c) 



You compress a sample of air slowly to half its original volume, 

keeping its temperature constant. The internal energy of the gas.

A. Decreases to half its original value.

B. Remains unchanged.

C. Increases to twice its original value. 

Clicker – Questions 3



15.7 Properties of an Ideal Gas

∆𝑈 = 𝑄 − 𝑊

We learned in Section 15.4 that the constant-volume molar heat capacity for a 

monatomic ideal gas is  

    𝐶𝑉 =
3

2
𝑅 = 12.5 J/(mol•K)

Question: What is the molar heat capacity for a monatomic ideal gas under a constant 

pressure? [ 𝑝 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡; 𝑊 = 𝑝 𝑉2 − 𝑉1 = 𝑝∆𝑉 ]

  𝑄 = ∆𝑈 + 𝑊 = 𝑛𝐶𝑉∆𝑇 + 𝑝∆𝑉
 

Since  𝑝𝑉 = 𝑛𝑅𝑇, or  𝑝∆𝑉 = 𝑛𝑅∆𝑇 

We have

  𝑄 = 𝑛𝐶𝑉∆𝑇 + 𝑝∆𝑉 = 𝑛𝐶𝑉∆𝑇 + 𝑛𝑅∆𝑇 = 𝑛 𝐶𝑉 + 𝑛𝑅 ∆𝑇 = 𝑛𝐶𝑝∆𝑇.

The constant-pressure molar heat capacity is   𝐶𝑝 = 𝐶𝑉 + 𝑅 =
5

2
𝑅



Properties of an ideal gas:Heat capacities and the adiabatic process

Walls of container

do not move

Free expansion: When the partition is broken the gas 

expands freely into the vacuum region. Internal energy 

stays constant and temperature does not change

Molar heat capacity depends on condition under which heat is added.

𝐶𝑉= heat is added to raise temperature 𝑄 = ∆𝑈 under constant volume, but letting 

pressure go up.

𝐶𝑝= heat is added while gas expands 𝑄 = ∆𝑈 + 𝑊 but keeping pressure constant.

Adiabatic: Q=0

 𝑝1𝑉1
𝛾

= 𝑝2𝑉2
𝛾

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡→𝛾 =
𝐶𝑝

𝐶𝑉

Isothermal: ΔT=0

 𝑝1𝑉1 = 𝑝2𝑉2 = 𝑛𝑅𝑇

Note: 𝐶𝑝 = 𝐶𝑉 + 𝑅 where 𝑅 = 8.314
𝐽

𝑚𝑜𝑙.𝐾



Molar heat capacity depends on condition under 

which heat is added.

𝐶𝑉= heat is added to raise temperature 𝑄 = ∆𝑈 

under constant volume, but letting pressure go 

up. W=0 no work, since volume is constant.

𝐶𝑝= heat is added while gas expands 𝑄 = ∆𝑈 +

𝑊 but keeping pressure constant. . W>0 work 

performed, since volume is expanding

𝐶𝑝 = 𝐶𝑉 + 𝑅 where 𝑅 = 8.314
𝐽

𝑚𝑜𝑙.𝐾

Careful with         constant pressure equations    W=p∆𝑉 = 𝑛𝑅 ∆𝑇

∆𝑈 = 𝑛𝐶𝑉∆𝑇,if at constant pressure replace 𝐶𝑉=𝐶𝑝-R=3/2R for a mono atomic gas



The gas shown in figure is in a completely insulated rigid container. 

Weight is added to the frictionless piston, compressing the gas. As this 

is done,

Clicker – Questions 4

A. The temperature of the gas stays the 

same because the container is 

insulated.

B. The temperature of the gas 

increases because heat is added to 

the gas.

C. The temperature of the gas 

increases because work is done on 

the gas.

D. The pressure of the gas stays the 

same because the temperature of the 

gas is constant.



Problem 15 - 75

pV-diagram for 0.004mole of ideal H2 gas 

temperature does not change during path bc.

Note: ab isochoric (constant volume)

          bc isothermic (constant temperature)

          ca isobaric (constant pressure)

For;

  ൠ
∆𝑇 = 0 →  ∆𝑈 = 0

𝑄 = ∆𝑈 + 𝑊
𝑄 = 𝑊 = 𝑛𝑅𝑇𝑙𝑛

𝑉𝑐

𝑉𝑏
 (isotherm)

 𝐶𝑉 =
5

2
𝑅 (diatomic gas)

 𝐶𝑝 = 𝐶𝑉 + 𝑅 =
7

2
𝑅 (R=8.315

𝐽

𝑚𝑜𝑙.𝐾
)

∆𝑈 = 𝑛𝐶𝑉∆𝑇

(a) What is the volume at c ?

𝑇𝑏 = 𝑇𝑐→ for states b and c

𝑝𝑉 = 𝑛𝑅𝑇 →  𝑝𝑏𝑉𝑏 = 𝑝𝑐𝑉𝑐

𝑉𝑐 = 𝑉𝑏

𝑝𝑏

𝑝𝑐
= 0.2 ∗

2

0.5
= 0.8 𝐿

(b) Find temperature of the gas at points ab and c

 𝑇𝑎 =
𝑝𝑎𝑉𝑎

𝑛𝑅
=

(0.5 𝑎𝑡𝑚)(1.013𝑥105 𝑃𝑎

𝑎𝑡𝑚
)(0.2𝑥10−3𝑚3)

0.004𝑚𝑜𝑙∗8.315
𝐽

𝑚𝑜𝑙.𝐾

= 305𝐾 (Note: 𝑝𝑎 =
𝑁

𝑚2)

𝑉𝑎 = 𝑉𝑏 → for states a and b →
𝑇

𝑝
=

𝑉

𝑛𝑅
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 →

𝑇𝑎

𝑝𝑎
=

𝑇𝑏

𝑝𝑏

𝑇𝑏 = 𝑇𝑐 = 𝑇𝑎

𝑝𝑏

𝑝𝑎
= 305 ∗

2

0.5
= 1220𝐾

Continued on next slide



factors of unity 

1 atm = 1.013x105 Pa

1 m3 = 103 L

(c) How much heat went into or out of the gas during segments ab, ca and bc ?

ab: 𝑄 = 𝑛𝐶𝑉∆𝑇 = 𝑛
3

2
𝑅∆𝑇 = 0.004𝑚𝑜𝑙

3

2
∗ 8.315

𝐽

𝑚𝑜𝑙.𝐾
1220 − 305 𝐾 = +76 𝐽

ca: 𝑄 = 𝑛𝐶𝑝∆𝑇 = 𝑛
7

2
𝑅∆𝑇 = 0.004𝑚𝑜𝑙

7

2
∗ 8.315

𝐽

𝑚𝑜𝑙.𝐾
305 − 1220 𝐾 = −107 𝐽

bc: 𝑄 = 𝑊 = 𝑛𝑅𝑇 = 𝑛𝑅𝑇𝑙𝑛
𝑉𝑐

𝑉𝑏
= 0.004𝑚𝑜𝑙 ∗ 8.315

𝐽

𝑚𝑜𝑙.𝐾
1220𝐾 ∗ ln(

0.8 𝐿

0.2 𝐿
) = +56 𝐽

(d) Find the change in the internal energy of this hydrogen during segments ab, ca and 

bc ?

ab: ∆𝑈 = 𝑛𝐶𝑉∆𝑇 = 𝑛
5

2
𝑅∆𝑇 = 0.004𝑚𝑜𝑙

5

2
∗ 8.315

𝐽

𝑚𝑜𝑙.𝐾
1220 − 305 𝐾 = +76 𝐽

ca: ∆𝑈 = 𝑝 𝑉𝑐 − 𝑉𝑎 + 𝑛
7

2
𝑅∆𝑇

= 0.5 ∗ 1.013 ∗ 105 0.8 − 0.2 ∗ 10−3 + 0.004𝑚𝑜𝑙
7

2
∗ 8.315

𝐽

𝑚𝑜𝑙. 𝐾
305 − 1220 𝐾

= −76 𝐽
bc: ∆𝑇 = 0 → ∆𝑈 = 0

Note: the net energy change in a cycle is zero. ∆𝑈𝑡𝑜𝑡𝑎𝑙 = +76 + 0 − 76 = 0



15.70.  Set Up:  For an isothermal process, 0T =   For an adiabatic process, 0Q =   

Solve:  (a) 0T =   0U =  and 300 JQ W= =  

(b) 0Q =   300 JU W = − = −  



15.71.  Set Up:  
pV nRT= 

 For the isobaric process, W p V nR T=   =     For the isothermal process, 

f

i

ln
V

W nRT
V

 
=   

 

Solve:  (a) The pV diagram for these processes is sketched in the figure below. 
 

 
 

(b) Find 2T   For process 1 2,→  n, R, and p are constant so constant
T p

V nR
= =   1 2

1 2

T T

V V
=  and 

2
2 1

1

(355 K)(2) 710 K
V

T T
V

 
= = =  

 

(c) The maximum pressure is for state 3. For process 2 3,→  n, R, and T are constant. 2 2 3 3p V p V=  and 

5 52
3 2

3

(2 40 10 Pa)(2) 4 80 10 Pa
V

p p
V

 
= =   =    

 

(d) process 1 2:→ (0 250 mol)(8 315 J/mol K)(710 K 355 K) 738 KW p V nR T=   =   =    − =   

     process 2 3:→ 3

2

1
ln (0 250 mol)(8 315 J/mol K)(710 K)ln 1023 J

2

V
W nRT

V

   
= =    = −    

  
 

   process 3 1:→  0V =  and 0W =   

The total work done is 738 J ( 1023 J) 285 J+ − = −   This is the work done by the gas. The work done on the gas is 285 J. 



15.52.  Set Up:  Use pV nRT= to calculate /c aT T   Calculate U and W and use U Q W = − to obtain Q. For path 

ac, the work done is the area under the line representing the process in the pV diagram. 

Solve:  (a) 
5 3

5 3

(1 0 10  J)(0 060 m )
1 00

(3 0 10  J)(0 020 m )

c c c

a a a

T p V

T p V

  
= = =  

  
 c aT T=   

(b) Since ,c aT T=  0U = for process abc. For ab, 0V = and 0abW =   For bc, p is constant and bcW p V=   

5 3 3(1 0 10  Pa)(0 040 m ) 4 0 10  J=    =     Therefore, 34 0 10  JabcW = +     Since 0,U =  34 0 10  JQ W= = +     

34 0 10  J  of heat flows into the gas during process abc. 

(c) 5 5 3 31
(3 0 10  Pa 1 0 10  Pa)(0 040 m ) 8 0 10  J

2
W =   +    = +     

38 0 10  Jac acQ W= = +     

Reflect:  The work done is path dependent and is greater for process ac than for process abc, even though the initial 

and final states are the same. 



15.49.  Set Up:  The pV diagram shows that V is constant during the process. 

Solve:  (a) 0W =  since 0V =   

(b) pV nRT=  and 
V

T p
nR

 
=   

 When p increases while V and n are constant, then T must increase. In fact, if p triples 

the absolute temperature T triples. 

(c) U Q W = −   534 JQ = +  and 0W =  gives 534 JU = +   The internal energy increased by 534 J. 

(d) b a3 ,T T=  as derived in part (b). 



Stirling Engine
The Stirling Engine is a piston that, 

when heated or cooled, increases or 

decreases the pressure/energy of the 

gas trapped inside. This causes the 

gas molecules to apply more pressure 

on the piston. This in turn increases the 

pressure on the opposite side of the 

piston, and the cycle repeats. As long 

as heat is allowed to flow (be it from a 

cold or hot source) the gas pressure 

variance will drive the piston.

To set up the demonstration, place the 

beaker of water on the hot plate and 

the stirling engine on the beaker. Turn 

the hot plate on to 300C. It will take 

approximately 21 minutes for the water 

to boil.  If the stirling engine does not 

begin to spin on its own, give it a small 

spin.

 



Crookes Radiometer

The radiometer 

consists of black 

and white vanes 

inside a partial 

vacuum. When 

heated via a light 

bulb, the vanes 

begin to spin (Black 

vanes leading, or 

clockwise in the 

photo) due to 

thermal 

transpiration as well 

as gas pressure 

differential.
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