Chapter 14: Temperature and Heat

Goals:

- To study temperature and temperature scales.
- To describe thermal expansion and its applications.
- To explore and solve problems involving heat, phase changes and calorimetry.
- To study heat transfer.
- To describe solar energy and see how technology can lead to resource conservation.

Chapter 14 Temperature and Heat

- To understand temperature and temperature scales.
- To describe thermal expansion and its applications.
- To explore and solve problems involving heat, phase changes and calorimetry.
- To understand heat transfer.

14.1 Temperature and Thermal Equilibrium

Temperature - Figure 14.1

- Temperature is an attempt to measure the "hotness" or "coldness" on a scale you devise.
- A device to do this is called a thermometer and is usually calibrated by the melting and freezing points of a substance. This is most often water with corrections for atmospheric pressure well known.
- The thermometer is often a container filled with a substance that will expand or contract as heat flows in its surroundings.

(a) Changes in temperature cause the liquid's volume to change.

(b) Changes in temperature cause the pressure of the gas to change.

Q17.1

Clicker question 1

The illustration shows a thermometer that uses a column of liquid (usually mercury or ethanol) to measure air temperature. In thermal equilibrium, this thermometer measures the temperature of...

Changes in temperature cause the liquid's volume to change.
A. the column of liquid.
B. the glass that encloses the liquid.
C. the air outside the thermometer.
D. both A and B.
E. all of A, B, and C.

What is thermal equilibrium?

- If two objects are placed in contact and one is "hotter" than the other, a net amount of heat energy will flow from the hotter to the colder.
- This process cools down the hotter object and heats up the colder object.
- This process will continue until both objects reach the same temperature, in a state called thermal equilibrium.

Here are a couple simple concepts:

- Thermal conductor: a medium through which heat energy can flow.
- Thermal insulator: a medium through which heat energy can not flow.

The Zeroth Law of Thermodynamics

If System A is in thermal equilibrium with System C $\left(T_{\mathrm{A}}=T_{\mathrm{C}}\right)$, and, if System B is in thermal equilibrium with System $\mathrm{C}\left(T_{\mathrm{B}}=T_{\mathrm{C}}\right)$, then,

System A is in thermal equilibrium with System $\mathrm{B}\left(T_{\mathrm{A}}=T_{\mathrm{B}}\right)$.

Thermometers and thermal equilibrium

(a) Changes in temperature cause the liquid's volume to change.

Temperature and thermal equilibrium

"hot" and "cold" is quantified by thermometers.

Based on: thermal expansion (liquid or gas), change of resistance of a wire, thermoelectric effect.

The zeroth law of thermodynamics

(a) If systems A and B are each in thermal equilibrium with system C.

(b) ... then systems A and B are in thermal equilibrium with each other.

Two systems that are each in thermal equilibrium with a third system are in thermal equilibrium with each other.

Two systems are in thermal equilibrium if they have the same temperature.
14.2 Temperature Scales

Celsius and Fahrenheit Temperature Scales

- Based on the boiling and freezing points of water.
- In many other countries, the Celsius (also called Centigrade) scale is used with water freezing at $0^{\circ} \mathrm{C}$ and boiling at $100^{\circ} \mathrm{C}$.
- In the United States, the Fahrenheit scale is used with water freezing at $32^{\circ} \mathrm{F}$ and boiling at $212^{\circ} \mathrm{F}$.
- Conversion between them: $T_{f}=\frac{9}{5} T_{c}+32$
- Note that the interval (degree) is smaller in the Fahrenheit scale.

The Kelvin Scale, or, the Absolute Temperature Scales

- Some simple gases, especially helium, when placed in a constant-volume container, their pressures have a simple linear relationship with the temperature.

Conversion between Kelvin and Celsius scales:

$$
T_{K}=T_{C}+273.15
$$

Water	Celsius Scale	Kelvin Scale
Freezing point	$0{ }^{\circ} \mathrm{C}$	273.15
K		
Boiling point K	$100^{\circ} \mathrm{C}$	373.15

The Third Law of Thermodynamics: It is impossible by any procedure, no matter how idealized, to reduce the temperature of any system to zero temperature in a finite number of finite operations

Temperature Conversions - Figure 14.5

- Be comfortable converting between the different temperature scales.

Q-RT17.1 Clicker question 2

Rank the following temperatures from highest to lowest.
A. $20.0^{\circ} \mathrm{F}$
a) ABCDE
b) BADEC
B. $20.0^{\circ} \mathrm{C}$
c) EDCBA
d) BADCE
C. 20.0 K
D. $-80.0^{\circ} \mathrm{F}$
E. $-80.0^{\circ} \mathrm{C}$

Celsius temperature scale

Reference temperature $0^{\circ} \mathrm{C}$ water freezes and $100^{\circ} \mathrm{C}$ water boils.

Fahrenheit temperature scale

Reference temperature $32^{\circ} \mathrm{F}$ water freezes and $212^{\circ} \mathrm{F}$ water boils.

Intervals between reference temperature;

$$
\frac{100(\text { celsius })}{180(\text { fahrenheit })}=\frac{5}{9} \approx \frac{1}{2}
$$

Convert Celsius to Fahrenheit;

$$
\begin{gathered}
T_{F}=\frac{9}{5} T_{C}+32^{\circ}(\text { obtain Fahrenheit }) \\
T_{C}=\frac{5}{9} T_{F}-32^{\circ}(\text { obtain Celsius })
\end{gathered}
$$

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

	K	C	F
Water boils	$\begin{gathered} \text { ^103 } \\ 100 \end{gathered}$	$\uparrow^{100^{\circ}}$	$180 \mathrm{~F}^{\circ}$
Water freezes	\vee_{273}	0°	$\checkmark 32^{\circ}$
CO_{2} solidifies	195	-78 ${ }^{\circ}$	$-109{ }^{\circ}$
Oxygen liquifies	90	$-183{ }^{\circ}$	$-298{ }^{\circ}$
Absolute zero	0	-273	-460°

Example

A piece of iron has a temperature of $2^{\circ} \mathrm{C}$. A second identical piece of iron has twice the internal energy. What is the temperature of the second piece of iron?

a) $4^{\circ} \mathrm{C}$
b) $277^{\circ} \mathrm{C}$
c) $8^{\circ} \mathrm{C}$
d) 275 K

Answer: $277^{\circ} \mathrm{C}$
Its temperature will be $277^{\circ} \mathrm{C}$, and most certainly not $4^{\circ} \mathrm{C}$!
At twice the internal energy, the iron will have twice the absolute temperature. Its initial absolute temperature is $273 \mathrm{~K}+2 \mathrm{~K}=275 \mathrm{~K}$.
Twice this is 550 K . Expressed in Celsius, $550 \mathrm{~K}-273 \mathrm{~K}=277^{\circ} \mathrm{C}$.

14.3 Thermal Expansion

Linear Expansion

Under a moderate change in temperature:

- Length change is proportional to the original length.
- Length change is proportional to temperature change.

$$
\begin{aligned}
& \Delta L=\alpha L_{0} \Delta T \\
& L=L_{0}+\Delta L=L_{0}(1+\alpha \Delta T)
\end{aligned}
$$

Note:

- $\Delta T=T-T_{0}$ is the change in temperature.
- L_{0} is the initial length at the initial temperature T_{0}.
- The coefficient of linear expansion α is material dependent (see Table 14.1), in units of K^{-1} or $\left({ }^{\circ} \mathrm{C}\right)^{-1}$.
- ΔL can be positive (expansion) or negative (contraction).

For moderate temperature changes, ΔL is directly proportional to ΔT :

ΔL is also directly proportional to L_{0} :

For moderate temperature changes, ΔL is

directly proportional to ΔT :

Thermal Expansion

$$
\underbrace{\Delta{\underset{t}{t}}_{L}^{L}}_{\text {length }}=\underset{\text { temperature }}{\alpha L_{o} \Delta}{\underset{t}{u}}_{T}^{T}
$$

Here; α is coefficient of linear expansion $\left[\mathrm{K}^{-1}\right.$ or $\left.\mathrm{C}^{-1}\right]$ (Fractional change in length during one degree temperature change)

$$
L=L_{o}+\Delta L=L_{o}(1+\alpha \Delta T)
$$

Total length expansion of two connected rods of different materials

$$
\Delta L_{1}+\Delta L_{2}=\alpha_{a} L_{o 1} \Delta \underbrace{T}_{\omega}+\alpha_{b} L_{o 2} \Delta \underbrace{T}_{\omega}
$$

TABLE 14.2 Coefficients of volume expansion

Material	$\boldsymbol{\beta}\left(\mathbf{K}^{-1}\right)$
Solids	
Quartz (fused)	0.12×10^{-5}
Invar	0.27×10^{-5}
Glass	$1.2-2.7 \times 10^{-5}$
Steel	3.6×10^{-5}
Copper	5.1×10^{-5}
Brass	6.0×10^{-5}
Aluminum	7.2×10^{-5}
Liquids	
Mercury	18×10^{-5}
Glycerin	49×10^{-5}
Ethanol	75×10^{-5}
Carbon disulfide	115×10^{-5}
Coopright 0 2007 Pearson Education. Inc.publishing as Addison Westey	

TABLE 14.1 Coefficients of linear expansion for selected materials M
Material $\quad \alpha\left(\mathrm{K}^{-1}\right.$ or $\left.\mathrm{C}^{0-1}\right)$

Quartz (fused)	0.04×10^{-5}
Invar (nickel-	
\quad iron alloy)	0.09×10^{-5}
Glass	$0.4-0.9 \times 10^{-5}$
Steel	1.2×10^{-5}
Copper	1.7×10^{-5}
Brass	2.0×10^{-5}
Aluminum	2.4×10^{-5}

Volume Expansion

Copyight © 2007 Pearson Education, Inc. publishing as Addison Westey

$$
\begin{gathered}
\Delta V=\beta V_{o} \Delta T \\
V=V_{o}(1+\beta \Delta T)
\end{gathered}
$$

Coeffficient of volume expansion (K^{-1} or C^{-1})

Example

When the temperature of a metal ring increases, does the hole become a)larger b)smaller c) remain the same size?

Example

When the temperature of the piece of metal is increased and the metal expands.
Will the gap between the ends become
a)narrower, b)wider, c) remain unchanged?

Volume Expansion

Under a moderate change in temperature:

- Volume change is proportional to the original volume.
- Volume change is proportional to temperature change.

$$
\begin{aligned}
& \Delta V=\beta V_{0} \Delta T \\
& V=V_{0}+\Delta V=V_{0}(1+\beta \Delta T)
\end{aligned}
$$

Note:

- $\Delta T=T-T_{0}$ is the change in temperature.
- V_{0} is the initial volume at the initial temperature T_{0}.
- The coefficient of volume expansion β is material dependent (see Table 14.2), in units of K^{-1} or $\left({ }^{\circ} \mathrm{C}\right)^{-1}$.
- ΔV can be positive (expansion) or negative (contraction).

Volume expansion

$$
\begin{array}{|c|}
\Delta V=\beta V_{o} \Delta T \\
V=V_{o}(1+\beta \Delta T)
\end{array}
$$

$\beta=$ coefficient of volume expansion $=\left[\mathrm{K}^{-1}\right]$
Note: β is much larger for liquids than for solids.

Example 14.4: Expansion of mercury

TABLE 14.2 Coefficients of volume expansion

Material	$\boldsymbol{\beta}\left(\mathbf{K}^{\mathbf{1}}\right)$
Solids	
Quartz (fused)	0.12×10^{-5}
Invar	0.27×10^{-5}
Glass	$1.2-2.7 \times 10^{-5}$
Steel	3.6×10^{-5}
Copper	5.1×10^{-5}
Brass	6.0×10^{-5}
Aluminum	7.2×10^{-5}

Liquids
Mercury $\quad 18 \times 10^{-5}$
Glycerin
49×10^{-5}
Ethanol
75×10^{-5}
Carbon disulfide the temperature is raised to $100^{\circ} \mathrm{C}$, does the mercury overflow? The volume of expansion coefficient are;

$$
\begin{gathered}
\text { glass }=18 \times 10^{-5} \mathrm{~K}^{-1} \\
\text { mercury }=1.2 \times 10^{-5} \mathrm{~K}^{-1}
\end{gathered}
$$

$$
\Delta V(\text { flask })=\beta_{\text {glass }} V_{o} \Delta T=\left(1.2 \times 10^{-5} \mathrm{~K}^{-1}\right)\left(200 \mathrm{~cm}^{3}\right)\left(100^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)=0.19 \mathrm{~cm}^{3}
$$

$$
\Delta V(\text { mercury })=\beta_{H g} V_{o} \Delta T=\left(18 \times 10^{-5} K^{-1}\right)\left(200 \mathrm{~cm}^{3}\right)\left(100^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)=2.9 \mathrm{~cm}^{3}
$$

$$
\Delta V_{\text {mercury }}-\Delta V_{\text {glass }}=(2.9-0.19) \mathrm{cm}^{3}=2.7 \mathrm{~cm}^{3} \text { (overflow) }
$$

Clicker question 3

When the temperature of a certain solid, rectangular object increases by ΔT, the length of one side of the object increases by $0.010 \%=1.0 \times 10^{-4}$ of the original length. The increase in volume of the object due to this temperature increase is...
A. $0.010 \%=1.0 \times 10^{-4}$ of the original volume.
B. $(0.010)^{3 \%}=0.0000010 \%=1.0 \times 10^{-8}$ of the original volume.
C. $\left(1.0 \times 10^{-4}\right)^{3}=0.00000000010 \%=1.0 \times 10^{-12}$ of the original volume.
D. $0.030 \%=3.0 \times 10^{-4}$ of the original volume.
E. Not enough information is given to decide.

(The Anomalous) Expansion of Water

Water has the smallest volume (largest density) near $4^{\circ} \mathrm{C}$.

14.4 Heat Energy

The Mechanical Equivalent of Heat

- Done by James Joule in the 1800s.
- Potential energy stored in a raised mass was used to pull a cord wound on a rod mounted to a paddle in a water bath.
- The measured temperature change of the water proved the equivalence of mechanical energy and heat.
- The unit for potential energy, kinetic energy, and heat is the Joule in honor of his work.

Some Simple Numbers:

- On food labels, 1 calorie is 1 kilocalorie (kcal) in SI units.
- 1 cal is 4.184 J .
- The Big Mac contains about 3.5 million joules.
- The heat energy released by a $1000-\mathrm{W}$ cooktop in 1000 s is 1 million joules.

(a) Raising the temperature of water by doing work on it

(b) Raising the temperature of water by direct heating

(a) Raising the temperature of water by doing work on it

(b) Raising the temperature of water by direct heating
Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

Quantity of Heat

Definition of Calorie

1 cal is equal to the amount of heat required to raise the temperature of 1 g of water from $14.5^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$
$Q=m \underbrace{c}_{w} \Delta T$
specific heat capacity $\left[\frac{\mathrm{J}}{\mathrm{kg} \cdot \mathrm{K}}\right]$
Note: $1 \mathrm{~K}=1^{\circ} \mathrm{C}$

- The food calorie is properly noted as a kilocalorie in SI units.
- A calorie is 4.184 J .
- So, the Big Mac you're about to eat will cost your diet about two and a half million joules.

Calories in Big Mac
Without Cheese
576 food calories $=576 * 10^{3} \mathrm{cal}$
Tags: modonalds, fast food
Wondering how many calories are in Big Mac?
Free calorie and nutrition data information from Calorie Count.
Convert to joules

Nutrition Facts
 Serving Size 1 sandwich (215.0 g)

Amount Per Serving

Calories $576 \quad$ Calories from Fat 292

Calories from Fat 292 50\%
Saturated Fat 12.0 g
Polyunsaturated Fat 2.8 g

Monounsaturated Fat 14.1 g	$\mathbf{3 4 \%}$
Cholesterol 103 mg	$\mathbf{3 1}$

Cholesterol 103mg	$\mathbf{3 4} \%$
Sodium 742 mg	$\mathbf{3 1 \%}$
Total Carbohydrates 38.7 g	$\mathbf{1 3} \%$
Prot	

Protein 31.8 g

| Vitamin A 1\% • Vitamin C 2\%
 Calcium 9\% Iron 31\%
 ${ }^{\text {B }}$ Based on a 2000 calorie diet ${ }^{2}$ | |
| :--- | :--- | ---: |

See more extended nutritional details

> No Carb Foods Cut Out The Carbs For A Healthier You. $\begin{aligned} & \text { Find No Carb Food Lists Now. } \\ & \text { dailylife.com }\end{aligned}$

4 Signs of a Heart Attack
Right Before a Heart Attack Your Body Will Give You These 4 Signs w3.newsmax.com
\#1 Low Carb Diet Bread
1 Slice= 3 Carbs \& 16 g Protein -Organic -Buy In Over 2000 Stores www.JulianBakery.com

Nutritional Analysis
Breakdown

Daily Values

Specific Heat

How much heat energy Q is needed to change the temperature of a substance of mass m by an amount ΔT ?

$$
Q=m c \Delta T
$$

Note:
(a) The heat energy is proportional to m and ΔT.
(b) The proportionality constant c is called the specific heat, which is a material-dependent quantity (see Table 14.3).
(c) The specific heat has the units of $\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$.
(d) Q is positive if it is transferred into the system, and, negative otherwise.

Specific heat

The specific heat capacity of water is approximately;

$$
C_{\text {water }}=4190\left[\frac{J}{k g \cdot K}\right] \approx 1\left[\frac{c a l}{g \cdot K}\right] \approx 1\left[\frac{B t u}{l b \cdot F^{\circ}}\right]
$$

Note: specific heat capacity is the amount of heat needed per unit mass and per unit temperature change.

$$
Q=\underbrace{m}_{\substack{\text { unit } \\ \text { mass }}} c \underbrace{\Delta t}_{\substack{\text { unit } \\ \text { temperature } \\ \text { change }}} \rightarrow Q=1 * c * 1
$$

TABLE 14.3 capacities (constant pressure, tem- perature range $\mathbf{0}^{\circ} \mathbf{C}$ to $\left.\mathbf{1 0 0}{ }^{\circ} \mathbf{C}\right)$		
	Specific heat capacity (\mathbf{c})	
	$\mathbf{J} /(\mathbf{k g} \cdot \mathbf{K})$	$\mathbf{c a l} /(\mathbf{g} \cdot \mathbf{K})$
Material		
Solids		
Lead		
Mercury	0.13×10^{3}	0.031
Silver	0.14×10^{3}	0.033
Copper	0.23×10^{3}	0.056
Iron	0.39×10^{3}	0.093
Marble $\left(\mathrm{CaCO}_{3}\right)$	0.47×10^{3}	0.112
	0.88×10^{3}	0.21

	Specific heat capacity (\mathbf{c})	
Material	$\mathbf{J} /(\mathbf{k g} \cdot \mathbf{K})$	$\mathbf{c a l}(\mathbf{g} \cdot \mathbf{K})$
Salt	0.88×10^{3}	0.21
Aluminum	0.91×10^{3}	0.217
Beryllium	1.97×10^{3}	0.471
Ice $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.0^{\circ} \mathrm{C}\right)$	2.01×10^{3}	0.48
Liquids		
Ethylene glycol	2.39×10^{3}	0.57
Ethanol	2.43×10^{3}	0.58
Water	4.19×10^{3}	1.00

Q17.5 Clicker question 4

You wish to increase the temperature of a $1.00-\mathrm{kg}$ block of a certain solid substance from $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. (The block remains solid as its temperature increases.) To calculate the amount of heat required to do this, you need to know...
A. the specific heat capacity of the substance.
B. the molar heat capacity of the substance.
C. the heat of fusion of the substance.
D. the thermal conductivity of the substance.
E. more than one of the above.

Heat Capacity

- Substances have an ability to "hold heat" that goes to the atomic level.
- One of the best reasons to spray water on a fire is that it suffocates combustion. Another reason is that water has a huge heat capacity. Stated differently, it has immense thermal inertia. In plain terms, it's good at cooling things off because it's good at holding heat.
- Taking a copper frying pan off the stove with your bare hands is an awful idea because metals have almost no heat capacity. In plain terms, metals give heat away as fast as they can.

Clicker - Questions 5

You can reach with your bare hand inside a $300^{\circ} \mathrm{C}$ pizza oven briefly without harm. But you cannot reach into a pot of boiling water at $100^{\circ} \mathrm{C}$ without being burned. The explanation has to do with differences in...
A. Conductivities
B. Specific heat capacities.
C. Both of these.
D. Neither of these.

Clicker - Questions 6

You immerse a $1-\mathrm{kg}$ block of iron in $1-\mathrm{kg}$ of water in an insulated chamber, add 100J of heat, and allow the iron and water to equilibrate to the same temperature. Which has absorbed more heat, the iron or the water?
A. They absorb the same amount of heat.
B. The iron absorbs more heat.
C. The water absorbs more heat.

14.5 Phase Changes

Phase change. As heat is added, temperature stays constant while phase change proceeds: $Q= \pm m L$.

Temperature of water changes. During these periods, temperature rises as heat is added: $Q=m c \Delta T$.

Phase Changes and the Snowflake

- Which is worse to touch for a burn: $100^{\circ} \mathrm{C}$ water or $100^{\circ} \mathrm{C}$ steam? The steam, because it also contains the energy that it took to become a gas. In the case of water, this is 2.3 MILLION joules per kg of water.
- The snowflake on the left needs to absorb the latent heat of fusion to become a liquid. The metal in the person's hand to the right just did that from the person's body temperature.
- Put ice in water. You have a refreshing drink but also solid water and liquid water in equilibrium.

Phase change. As heat is added, temperature stays
constant while phase change proceeds: $Q= \pm m L$.

Phase changes

Temperature change. Temperature rises as heat is added: $Q=m c \Delta T$.
TABLE 14.4 Heats of fusion and vaporization

Substance	Normal melting point*		Heat of fusion, $\mathbf{L}_{\mathrm{i}}, \mathrm{J} / \mathrm{kg}$	Normal boiling point*		Heat of vaporization, $\mathrm{L}_{\mathrm{v}}, \mathrm{J} / \mathrm{kg}$
	K	${ }^{\circ} \mathrm{C}$		K	${ }^{\circ} \mathrm{C}$	
Helium	\dagger	\dagger	\dagger	4.216	-268.93	20.9×10^{3}
Hydrogen	13.84	-259.31	58.6×10^{3}	20.26	-252.89	452×10^{3}
Nitrogen	63.18	-209.97	25.5×10^{3}	77.34	-195.81	201×10^{3}
Oxygen	54.36	-218.79	13.8×10^{3}	90.18	-182.97	213×10^{3}
Ethyl alcohol	159	-114	104.2×10^{3}	351	78	854×10^{3}
Mercury	234	-39	11.8×10^{3}	630	357	272×10^{3}
Water	273.15	0.00	334×10^{3}	373.15	100.00	2256×10^{3}
Sulfur	392	119	38.1×10^{3}	717.75	444.60	326×10^{3}
Lead	600.5	327.3	24.5×10^{3}	2023	1750	871×10^{3}
Antimony	903.65	630.50	165×10^{3}	1713	1440	561×10^{3}
Silver	1233.95	960.80	88.3×10^{3}	2466	2193	2336×10^{3}
Gold	1336.15	1063.00	64.5×10^{3}	2933	2660	1578×10^{3}
Copper	1356	1083	134×10^{3}	1460	1187	5069×10^{3}

Example of $\mathrm{H}_{2} \mathrm{O}$

Solid phase = ice Liquid phase = water Gaseous phase = steam

> Phase changes take place at a definite temperature and are accompanied by absorption or emission of heat.

1 kg of ice at $0^{\circ} \mathrm{C}$ becomes 1 kg of water at $0^{\circ} \mathrm{C}$ with supplying the heat of fusion.

$$
\text { Heat of fusion } L_{f}=3.34 \times 10^{5} \frac{\mathrm{j}}{\mathrm{~kg}}
$$

$$
\underbrace{Q}_{\text {hoat }}= \pm \underbrace{m}_{m o s c} L_{f}
$$

This process is reversible
Heat of evaporation $L_{v}=2.26 \times 10^{6} \frac{j}{\mathrm{~kg}}$

Note: Boiling and condensation depend on the atmospheric pressure. Water boils in Denver at $95^{\circ} \mathrm{C}$ and at $100^{\circ} \mathrm{C}$ in Aggieland.

Clicker question 7

A pitcher contains 0.50 kg of liquid water at $0^{\circ} \mathrm{C}$ and 0.50 kg of ice at $0^{\circ} \mathrm{C}$. You let heat flow into the pitcher until there is 0.75 kg of liquid water and 0.25 kg of ice. During this process, the temperature of the ice-water mixture...
A. increases slightly.
B. decreases slightly.
C. first increases slightly, then decreases slightly.
D. remains the same.
E. The answer depends on the rate at which heat flows.

Example: An ice water mixture comes to equilibrium

$$
\begin{aligned}
& \Delta Q(\text { water })=m c \Delta T=T_{f}-T_{i} \\
& \Delta Q(\text { ice })=m c \Delta T+m L_{F}+m c \Delta T
\end{aligned}
$$

equilibrium : $\Delta Q($ water $)+\Delta Q($ ice $)=0$

Clicker - Questions 8

Which requires more heat: Bringing a pan of liquid water from room temperature $\left(20^{\circ} \mathrm{C}\right)$ to the boiling point at $100^{\circ} \mathrm{C}$ or converting all of the liquid water to steam at a constant $100^{\circ} \mathrm{C}$?
A. Heating the liquid water.
B. Converting the liquid water to steam.
C. They require the same amount of heat.

Latent heat of infusion ice:

- The heat energy needs to be absorbed in order to change 1 kg of ice at $0^{\circ} \mathrm{C}$ and normal pressure to 1 kg of water at $0^{\circ} \mathrm{C}$ and normal pressure.

$$
L_{\mathrm{f}}=3.34 \times 10^{5} \mathrm{~J} / \mathrm{kg}
$$

- The same amount of heat energy is released in a reverse process.

Latent heat of vaporization of water:

- The heat energy needs to be absorbed in order to vaporize 1 kg of water at $100^{\circ} \mathrm{C}$ and normal pressure to 1 kg of vapor at $100^{\circ} \mathrm{C}$ and normal pressure.

$$
L_{\mathrm{v}}=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}
$$

- The same amount of heat energy is released in a reverse process.

14.6 Calorimetry----"Measuring Heat"

Rule: For a "closed" system, the total heat energy is conserved, or $\sum Q=0$.
Example 14.9 on page 442---Chilling your soda
Given: $m_{\text {lemonade }}=0.25 \mathrm{~kg}$, initially at $T_{\text {lemonade }, \mathrm{i}}=20^{\circ} \mathrm{C}$, and, ice initially at $T_{\text {ice, } \mathrm{i}}=-20^{\circ} \mathrm{C}$.
Find: How much ice is to be mixed with the lemonade so that the combined mix has a $T=0$ ${ }^{\circ} \mathrm{C}$ with all the ice melted?
Solution: Assume that the ice needed is $m_{\text {ice }}$. This mixing can be separated into a few steps.
(a) The heat that ice absorbs as it warms up from $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$:

$$
\left.Q_{1}=m_{\mathrm{ice}} c_{\mathrm{ice}}\left[0-\left(-20^{\circ} \mathrm{C}\right)\right]=m_{\mathrm{ice}} c_{\mathrm{ice}}\left(20^{\circ} \mathrm{C}\right) \quad \text { (positive }\right)
$$

(a) The heat that ice absorbs as it melts at $0^{\circ} \mathrm{C}$:

$$
Q_{2}=m_{\mathrm{ice}} L_{\mathrm{f}} \quad \text { (positive) }
$$

(b) The heat that lemonade releases as it cools from $20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$:

$$
Q_{3}=m_{\text {lemonade }} c_{\text {water }}[0-(20)]=-m_{\text {lemonade }} c_{\text {water }}\left(20^{\circ} \mathrm{C}\right) \quad \text { (negative) }
$$

Therefore,

$$
Q_{1}+Q_{2}+Q_{3}=m_{\mathrm{ice}} c_{\mathrm{ice}}\left(20^{\circ} \mathrm{C}\right)+m_{\mathrm{ice}} L_{\mathrm{f}}+\left[-m_{\text {lemonade }} c_{\text {water }}\left(20^{\circ} \mathrm{C}\right)\right]=0
$$

or,

$$
m_{\mathrm{ice}}=0.056 \mathrm{~kg}
$$

Example 14.11 on page 446
Conduction in two bars in series
Given: As shown in the sketch.
Find: (a) T at the joint
(b) Rate of heat flow.

Solution:
Assume that the joint has temperature T.
Heat flow in the steel bar: $\quad H_{S}=k_{S} A \frac{T_{H}-T}{L_{S}}$.
Heat flow in the copper bar: $\quad H_{c}=k_{c} A \frac{T-T_{C}}{L_{c}}$.
Therefore,

$$
k_{S} A \frac{T_{H}-T}{L_{s}}=k_{c} A \frac{T-T_{C}}{L_{c}},
$$

or, $(50.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}) \frac{100^{\circ} \mathrm{C}-T}{0.100 m}=(385 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}) \frac{T-0^{\circ} \mathrm{C}}{0.200 \mathrm{~m}}$.
Joint temperature $\mathrm{T}=20.7^{\circ} \mathrm{C}$.
Heat flow $H_{S}=k_{S} A \frac{T_{H}-T}{L_{S}}=(50.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})(0.0200 \mathrm{~m})^{2} \frac{100^{\circ} \mathrm{C}-20.7^{\circ} \mathrm{C}}{0.100 \mathrm{~m}}=15.9 \mathrm{~W}$

Example 14.12 on page 446

Conduction in two bars in parallel
Given: As shown in the sketch.
Find: Rate of total heat flow in the two bars.
Solution:
Heat flow in the steel bar: $\quad H_{S}=k_{S} A \frac{T_{H}-T}{L_{S}}$.
Heat flow in the copper bar: $\quad H_{c}=k_{c} A \frac{T-T_{C}}{L_{c}}$.
Therefore, total heat flow

$$
\begin{aligned}
H & =k_{s} A_{s} \frac{T_{H}-T}{L_{s}}+k_{c} A_{c} \frac{T-T_{c}}{L_{c}}, \\
& =(50.2 \mathrm{~W} / \mathrm{m} \cdot \mathrm{~K})(0.0200 \mathrm{~m})^{2} \frac{100^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}}{0.100 \mathrm{~m}}+(385
\end{aligned}
$$

$\mathrm{W} / \mathrm{m} \cdot \mathrm{K})(0.0200 \mathrm{~m})^{2} \frac{100^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}}{0.200 \mathrm{~m}}$.

$$
\begin{aligned}
& =77.0 \mathrm{~W}+20.1 \mathrm{~W} \\
& =97.1 \mathrm{~W}
\end{aligned}
$$

Heat of combustion

Gasoline $L_{c}=46,000 \frac{\mathrm{~J}}{\mathrm{~g}}=46 \times 10^{6} \frac{\mathrm{~J}}{\mathrm{~kg}}$

Energy value of food is measured in kilo-calories (Calories with capital C)

$$
1 \mathrm{kcal}=1000 \mathrm{cal}=4186 \mathrm{~J}
$$

Example: 1 g of peanut butter "contains 6 K calorie". If completely burned by exercising; it would release;

$$
6 K * 4186 \frac{\mathrm{~J}}{\mathrm{~K}}=25,000 \mathrm{~J}
$$

Note: Efficiency of energy conservation later, body is not totally efficient in "burning" food

The quantity of heat required depends on the material.

Water used about 4 times more than aluminum.

$$
\begin{aligned}
& \Delta Q=m \underbrace{c}_{w} \Delta T \\
& \text { specific heat capacity } \\
& C_{\text {water }}=4190 \mathrm{~J} \mathrm{~kg}^{-1}\left(C^{\circ}\right)^{-1}=4.19 \mathrm{Jg}^{-1}\left(C^{\circ}\right)^{-1}=1 \mathrm{cal} \mathrm{~g}^{-1}\left(C^{\circ}\right)^{-1}
\end{aligned}
$$

Example 14.6 Example person with fever

80 kg person ran fever at $39^{\circ} \mathrm{C}$ instead of normal $37^{\circ} \mathrm{C}$. Assume human body is mostly water, how much more heat is required?
$\Delta Q=m c \Delta T=80 * 4190 * 2=6.7 \times 10^{5} \mathrm{~J} \frac{1 \mathrm{cal}}{4.19 \mathrm{~J}}$
$=1.6 \times 10^{5} \mathrm{cal}=160 \mathrm{kcal}=160$ food value calories

14.7 Heat transfer

Conduction

Heat energy is transferred from one place to another via the interactions between the electrons and lattices.

Convection
Heat energy is transferred from one place to another via the flow of mass.

Radiation
Heat energy is transferred from one place to another via electromagnetic radiation.

Heat

current

Heat current $H=k A \frac{T_{\mathrm{H}}-T_{\mathrm{C}}}{L}$

Doubling the cross-sectional area of the conductor doubles the heat current $(H \propto A)$:

Doubling the length of the conductor halves the heat current ($H \propto 1 / L$):

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

Heat Transfer

a) Conduction

b) Convection
c) Radiation

1. Conduction:

Objects are in contact and heat is transferred from the hotter to the colder object.

$$
\underset{\begin{array}{c}
\text { heat } \\
\text { current }
\end{array}}{H}=\frac{\Delta Q}{\Delta t}
$$

Experimentally, it is proportional to contact area and ΔT, and inversely to length " L ".

Material	$\boldsymbol{k}(\mathbf{W} /(\mathbf{m} \cdot \mathbf{K}))$
Metals	
Lead	34.7
Steel	50.2
Brass	109
Aluminum	205
Copper	385
Silver	406
Other solids (representative values)	
Styrofoam	
Fiberglass	0.01
Wood	0.04
Insulating brick	$0.12-0.04$
Red brick	0.15
Concrete	0.6
Glass	0.8
Ice	0.8
Gases	1.6
Air	
Helium	0.024

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

$$
\begin{aligned}
H & =\frac{\Delta Q}{\Delta t}=\underbrace{k}_{\begin{array}{c}
\text { thermal } \\
\text { conductivity }
\end{array}} \underbrace{\left(\frac{T_{H}-T_{C}}{L}\right)}_{\begin{array}{c}
\text { area } \\
\text { temperature ifference } \\
\text { nit length }
\end{array}} \\
& \rightarrow \text { Watt }
\end{aligned}=\frac{\mathrm{J}}{\mathrm{~s}}=\frac{W \cdot m^{2} \cdot K}{m \cdot K \cdot m} \quad \text { unit of } \mathrm{k}=\left[\frac{W}{m \cdot K}\right]
$$

Note: Be consistent in units.
Standard units are W, m, K, kg etc.

Heat Conduction

$$
H=\frac{\Delta Q}{\Delta t}=k A \frac{T_{H}-T_{C}}{L} .
$$

Notes:
(a) The temperature T can be given in either Kelvin or Celsius.
(b) $H=\Delta Q / \Delta t$ is the rate of heat transfer.
(c) The thermal conductivity k is material-dependent (see Table 14.5).
(d) A is the cross-section area of the object and L is the length.

A house has a layer of wood 3 cm thick on the outside and a layer of Styrofoam insulation 2.2 cm thick on the inside wall surface. The wood has a thermal conductivity of $\mathrm{k}=0.08 \mathrm{~W} / \mathrm{m} \mathrm{K}$ and Styrofoam has $\mathrm{k}=0.01 \mathrm{~W} / \mathrm{m} \mathrm{K}$. The interior surface is is at $19{ }^{\circ} \mathrm{C}$ and the exterior surface is at $-10^{\circ} \mathrm{C}$
a) what is the temperature where wood and Styrofoam meet?
b) What is the rate of heat flow per square meter through that wall?
14.54. Set Up: The heat current Q / t is the same through the wood as through the Styrofoam ${ }^{\mathrm{TM}}$.

Solve : (a) $\frac{Q}{t}=\frac{k A\left(T_{\mathrm{H}}-T_{\mathrm{C}}\right)}{L}$ and $\left(\frac{Q}{t}\right)_{\mathrm{w}}=\left(\frac{Q}{t}\right)_{\mathrm{s}}$ gives $\frac{k_{\mathrm{w}} A\left(T-\left[-10.0^{\circ} \mathrm{C}\right]\right)}{L_{\mathrm{w}}}=\frac{k_{\mathrm{s}} A\left(19.0^{\circ} \mathrm{C}-T\right)}{L_{\mathrm{s}}}$.

$$
\frac{[0.080 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K})]\left(T+10.0^{\circ} \mathrm{C}\right)}{0.030 \mathrm{~m}}=\frac{[0.010 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K})]\left(19.0^{\circ} \mathrm{C}-T\right)}{0.022 \mathrm{~m}}
$$

$2.67\left(T+10.0^{\circ} \mathrm{C}\right)=0.455\left(19.0^{\circ} \mathrm{C}-T\right)$ and $T=\frac{26.7^{\circ} \mathrm{C}-8.65^{\circ} \mathrm{C}}{23.125}=-5.8^{\circ} \mathrm{C}$
(b) $\left(\frac{Q}{t A}\right)_{\mathrm{w}}=\frac{k\left(T_{\mathrm{H}}-T_{\mathrm{C}}\right)}{L}=\frac{[0.080 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})]\left(-5.8^{\circ} \mathrm{C}+10.0^{\circ} \mathrm{C}\right)}{0.030 \mathrm{~m}}=11 \mathrm{~W} / \mathrm{m}^{2}$

Or, $\left(\frac{Q}{t A}\right)_{\mathrm{s}}=\frac{[0.010 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})]\left(19.0^{\circ} \mathrm{C}-\left[-5.8^{\circ} \mathrm{C}\right]\right)}{0.022 \mathrm{~m}}=11 \mathrm{~W} / \mathrm{m}^{2}$, which checks.
Reflect: k is much smaller for the Styrofoam ${ }^{\mathrm{TM}}$ so the temperature gradient across it is much larger than across the wood.

Night: The land is colder than the water; convection sends a land breeze offshore.

Copyright © 2007 Pearson Education, Inc. publishing as Addison Wesley

2. Convection

Transfer of heat by the motion of a mass of fluid from one region of space to another.

Examples:

(a) Hot air and hot water home heating systems.
(b) Cooling by radiator of a car
(c) Heating of our body by blood flow
(d) Convection in the atmosphere, glider pilots use thermal updrafts

Heat Q is proportional to surface area and proportional to $\frac{5}{4} \Delta T$, complicated "wind-chill factors"

3. Radiation

Heat transfer by light in particular infra-red light

$$
\begin{gathered}
H=A e \sigma T^{4} \text { Stefan-Boltzmann } \\
\quad \sigma=5.6705 \times 10^{-8} \frac{W}{m^{2} K^{4}}
\end{gathered}
$$

e = emissivity (dimensionless)
e = 1 blackbody
Emissivity varies zero to one Emissivity of the earths atmosphere varies with cloud cover (on a clear sky e=1)

Clicker - Questions 9

Why is it significantly colder on a winter night under a clear sky than a cloudy sky?
A) The sun is not out
B) The lack of clouds makes it easier for heat to radiate out into space.
C) For the aesthetic.

3.Radiation

Stefan-Boltzmann law of heat radiation: $\quad H=\frac{\Delta Q}{\Delta t}=A e \sigma T^{4}$.
Notes: (a) The temperature T must be in the Kelvin scale.
(b) $\sigma=5.6705 \times 10^{-8} \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)$ is the Stefan-Boltzmann constant.
(c) A is the surface area of the object.
(d) e is the emissivity of the object, and is less than 1.

Example 14.14 on page $449--$-radiation from human body
Given: A, e, body temperature $T_{\mathrm{b}}=30^{\circ} \mathrm{C}$, surrounding temperature $T_{\mathrm{s}}=20$ ${ }^{\circ} \mathrm{C}$.
Find: Net rate of heat loss.
Solution:
(a) Heat loss to surrounding: $H=A e \sigma T_{b}^{4}$ with $T_{\mathrm{b}}=(273+30) \mathrm{K}=303 \mathrm{~K}$
(b) Heat received from the surrounding:

$$
H=A e \sigma T_{s}^{4} \text { with } T_{\mathrm{b}}=(273+20) \mathrm{K}=293 \mathrm{~K}
$$

(c) Net heat loss $=H=\operatorname{Ae\sigma } T_{b}^{4}-\operatorname{Ae\sigma } T_{s}^{4}=\operatorname{Ae\sigma }\left(T_{b}^{4}-T_{s}^{4}\right)=72 \mathrm{~W}$

3. Radiation

Radiation from the human body; $\mathrm{T}=30^{\circ} \mathrm{C}=30+273=303 \mathrm{~K}$ and surrounding $\mathrm{T}=20^{\circ} \mathrm{C}=20+273=293 \mathrm{~K}$. (Assume emissivity ≈ 1) Also the body area is $1.2 \mathrm{~m}^{2} 1.2$

Loss

$$
H=A e \sigma T^{4}=\left(1.2 \mathrm{~m}^{2}\right) 1\left(5.67 \times 10^{-8} \frac{\mathrm{~W}}{m^{2} K^{4}}\right)(303)^{4}=574 \mathrm{~W}
$$

Gain

$$
H=\operatorname{Ae\sigma }\left(T^{4}-T_{s}^{4}\right)=1.2\left(5.67 \times 10^{-8}\right)\left(303^{4}-293^{4}\right)=72 W
$$

Clicker - Questions

Suppose in a restaurant your coffee is served about 5 or 10 minutes before you are ready for it. In order that it be as hot as possible when you drink it, should you pour in the room-temperature cream...
a) right away
b) when you are ready to drink the coffee
c) It does not matter

Example 14.9 Chilling your soda

A physics student wants to cool 0.25 kg of Diet Omni-Cola (mostly water) initially at $20^{\circ} \mathrm{C}$ by adding ice initially at $-20^{\circ} \mathrm{C}$. How much ice should she add so that the final temperature will be $0^{\circ} \mathrm{C}$ with all the ice melted? Assumer that the heat capacity of the paper container may be neglected.

$$
\boldsymbol{Q}_{\text {ocola }}=m_{\text {OCola }} C_{\text {OCola }} \Delta T_{\text {OCola }}=(0.25 \mathrm{~kg})\left(4190 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot K}\right)\left(0^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)=\mathbf{- 2 1 , 0 0 0 ~ \mathrm { J }}
$$

$$
\boldsymbol{Q}_{\text {ice }}=m_{\text {ice }} C_{i c e} \Delta T_{\text {ice }}=\left(m_{\text {ice }}\right)\left(2.0 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)\left(0^{\circ} \mathrm{C}-\left(-20^{\circ} \mathrm{C}\right)\right)=\boldsymbol{m}_{\text {ice }}\left(\mathbf{4 . 0} \times \mathbf{1 0}^{4} \frac{\mathrm{~J}}{\mathbf{k g}}\right)
$$

$$
\boldsymbol{Q}_{\text {melt }}=m_{\text {ice }} L_{f}=\boldsymbol{m}_{\text {ice }}\left(3.34 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~kg}}\right)
$$

$$
\begin{aligned}
& Q_{\text {ocola }}+Q_{\text {ice }}+Q_{\text {melt }}=0 \\
& -21,000 \mathrm{~J}+m_{\text {ice }}\left(4.0 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~kg}}\right)+m_{\text {ice }}\left(3.34 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~kg}}\right)=0
\end{aligned}
$$

$$
m_{\text {ice }}=0.056 \mathrm{~kg}=56 \mathrm{~g}
$$

Clicker - Questions

11
You are a consultant for a cookware manufacturer who wishes to make a pan that will have two features:

1. Absorb thermal energy from a flame as quickly as possible.
2. Have a cooking surface that stays as hot as possible when heated

You should recommend a pan with the...
A. Outer and cooking surface black.
B. Outer and cooking surface shiny.
C. Outer surface shiny and cooking surface black.
D. Outer surface black and cooking surface shiny.

Problem 14.74: Hot air in a physics lecture

(a) Student listening has a heat output of 100W. How much heat goes into the lecture hall from 90 students over a 50 min lecture?
(b) Assume that all that heat goes to the $3200 \mathrm{~m}^{3}$ of air in the room and no air escapes. How much will the temperature raise during the 50 min lecture? ($c_{\text {air }}=$ $1020 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$ and $\rho_{\text {air }}=1.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$)
(c) If a class takes an exam, the heat output per student is 280 W . What is the room temperature after the 50 min exam?

Mass of air $=m=\rho . V=1.2 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} * 3200 \mathrm{~m}^{3}=3840 \mathrm{~kg} \quad$ and $1 \mathrm{~W}=1 \frac{\mathrm{~J}}{\mathrm{~s}}$
(a) $Q=m c \Delta T \rightarrow \Delta T=\frac{Q}{m c}$ and $Q=50 * 60 s * 90$ students $* 100 \frac{\mathrm{~J}}{\mathrm{~s}}=2.7 \times 10^{7} \mathrm{~J}$
(b)) $\Delta T=2.7 \times 10^{7} \frac{\mathrm{~J}}{3840 \mathrm{~kg} 1020 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}}=6.89^{\circ} \mathrm{C}$
(c) $\Delta T=6.89^{\circ} \mathrm{C} \frac{280 \mathrm{~W}}{100 \mathrm{~W}}=19.3^{\circ} \mathrm{C}$

Jogging in the heat of the day. You have probably seen
BIO people jogging in extremely hot weather and wondered "Why?" As we shall see, there are good reasons not to do this! When jogging strenuously, an average runner of mass 68 kg and surface area $1.85 \mathrm{~m}^{2}$ produces energy at a rate of up to $1300 \mathrm{~W}, 80 \%$ of which is converted to heat. The jogger radiates heat, but actually absorbs more from the hot air than he radiates away. At such high levels of activity, the skin's temperature can be elevated to around $33^{\circ} \mathrm{C}$ instead of the usual $30^{\circ} \mathrm{C}$. (We shall neglect conduction, which would bring even more heat into his body.) The only way for the body to get rid of this extra heat is by evaporating water (sweating). (a) How much heat per second is produced just by the act of jogging? (b) How much net heat per second does the runner gain just from radiation if the air temperature is $40.0^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$? (Remember that he radiates out, but the environment radiates back in.) (c) What is the total amount of excess heat this runner's body must get rid of per second? (d) How much water must the jogger's body evaporate every minute due to his activity? The heat of vaporization of water at body temperature is $2.42 \times 10^{6} \mathrm{~J} / \mathrm{kg}$. (e) How many 750 mL bottles of water must he drink after (or preferably before!) jogging for a half hour? Recall that a liter of water has a mass of 1.0 kg .

Jogging in the heat of the day

Assume a runner produces a rate of energy of 1.3 kW wit 80% into heat
(a) How much heat is generated by jogging? (use 80% of power is converted by jogging)

$$
P_{\text {jog }}=0.8 * 1300=1.04 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~s}}
$$

(b) How much heat does the runner gain from $40^{\circ} \mathrm{C}$ air of the environment?

$$
H_{n e t}=\operatorname{Ae\sigma }\left(T^{4}-T_{s}^{4}\right)=1.85 * 1 *\left(5.67 \times 10^{-8}\right)\left[306^{4}-313^{4}\right]=-87.1 \mathrm{~W}
$$

The person gains $87.1 \mathrm{~J} / \mathrm{s}$ by radiation.
(c) The total excess heat $(1040+87) \mathrm{J} / \mathrm{s}=1130 \mathrm{~J} / \mathrm{s}$
(d) In $1 \mathrm{~min}=60 \mathrm{~s}$ the runner must dispose $60 \mathrm{~s}^{*} 1130 \mathrm{~J} / \mathrm{s}=6.78 \times 10^{4} \mathrm{~J}$. This heat goes into sweating = evaporation of water;
Mass of water $m=\frac{Q}{L_{v}}=\frac{6.78 \times 10^{4}}{2.42 \times 10^{5}}=28 \mathrm{~g}$
(e) In a half hours or 30 minutes the runner looses $30 \mathrm{~min} X 0.028 \mathrm{~kg} / \mathrm{min}=0.84 \mathrm{~kg}$. The runner must drink $0.84 \mathrm{~kg}(1 \mathrm{~L} / 1 \mathrm{~kg})=0.84 \mathrm{~L}$ of water

Clicker - Questions

12

If you wish to save energy and you are going to leave your cool house for a half day or so on a very hot day but want it to be cool when you arrive home. How should you set your air conditioning thermostat?
(You will be coming back home at night-time, but the outside temp will still be high)
A. Set it a few degrees warmer
B. Off altogether.
C. Let it remain at the cool room temperature you desire.

Pulse Glass

Inside the glass is an orange solution of ethyl alcohol which has a low boiling point. Putting your hand one one side of the glass will cause the solution to evaporate and for the pressure to increase. This increase of pressure will cause the alcohol to flow to the other side of the glass.

