1) Vector \mathbf{A} has a magnitude of 20 m and makes an angle of 30° above the positive x axis. Vector \mathbf{B} has a magnitude of 15 m and is oriented 60° to the left of the y axis. Find the magnitude and direction of $2 \mathbf{A}+\mathbf{B}$
a. $30 \mathrm{~m}, 4^{\circ}$
b. $35 \mathrm{~m}, 52^{\circ}$
c. $58 \mathrm{~m}, 167^{\circ}$
d. $63 \mathrm{~m}, 232^{\circ}$
2) If the contraction of the left ventricle in a human heart lasts 250 mili-seconds and the speed of blood flow in the aorta (the outflow artery) is $0.8 \mathrm{~m} / \mathrm{s}$ after the contraction ends, what is the average acceleration of a blood cell as it leaves the heart?
a. $\quad 310 \mathrm{~m} / \mathrm{s}^{2}$
b. $\quad 31 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad 3.2 \mathrm{~m} / \mathrm{s}^{2}$
d. $\quad 0.32 \mathrm{~m} / \mathrm{s}^{2}$
3) A projectile is fired from the ground at an angle of 60 degrees above the horizontal with an initial speed of $30 \mathrm{~m} / \mathrm{s}$. What is the magnitude and direction (relative to the horizontal) of the projectile's velocity at its maximum height?
a. $\quad 15 \mathrm{~m} / \mathrm{s}, 0^{\circ}$
b. $0 \mathrm{~m} / \mathrm{s}, 0^{\circ}$
c. $\quad 15 \mathrm{~m} / \mathrm{s}, 60^{\circ}$
d. $0 \mathrm{~m} / \mathrm{s}, 0^{\circ}$
4) A box rests on a frozen pond (assume it to be frictionless and horizontal). If a fisherman applies a horizontal force with a magnitude 48 N to the box and produces an acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$, what is the box's mass?
a. Not enough information given.
b. $\quad 144 \mathrm{~kg}$
c. 0.0625 kg
d. 16 kg
5) Two boxes connected by a rope are pulled across a horizontal floor. There is friction between the floor and the boxes. Which way would the force due to friction point in each of the box's free-body diagrams?
a. Opposite the direction of movement.
b. In the same direction as the movement.
c. Perpendicular to the direction of movement.
d. The friction between the two boxes will cancel, leaving no net friction.
6) A table with a weight equivalent to 800 N is slid across a floor with friction. The pushing force has a magnitude of 100 N . If the table moves with constant speed, the friction force must be...
a. 100 N
b. Greater than 100 N but less than 800 N
c. 800 N
d. Greater than 800 N
7) A surgeon is using material from a donated heart to repair a patient's damaged aorta and needs to know the elastic characteristics of the material. Testing showed a 16 cm strip of the material stretches 3.74 cm when 1.5 N of pulling force is exerted on it. What is the force constant of the material?
a. $\quad 9.375 \mathrm{~N} / \mathrm{m}$
b. $\quad 40 \mathrm{~N} / \mathrm{m}$
c. $\quad 2.5 \mathrm{~N} / \mathrm{m}$
d. $\quad 10.66 \mathrm{~N} / \mathrm{m}$
8) A fishing weight of mass 0.2 kg is tied to a fishing line that is 0.5 m long. The weight is then whirled in a vertical circle. The fishing line will break if its tension exceeds 100 N . At what speed will the string break?
a. $\quad 256 \mathrm{~m} / \mathrm{s}$
b. $27 \mathrm{~m} / \mathrm{s}$
c. $\quad 4 \mathrm{~m} / \mathrm{s}$
d. $\quad 16 \mathrm{~m} / \mathrm{s}$
9) You throw a 20 N rock into the air from the ground and notice that when it is 15 m high, it is traveling upwards at $25 \mathrm{~m} / \mathrm{s}$. Use the work-energy theorem to find the maximum height of the rock.
a. 30.3 m
b. 46.8 m
c. 25 m
d. 93.6 m
10) A 1.5 kg brick is sliding along a rough horizontal surface at $13 \mathrm{~m} / \mathrm{s}$. If the brick stops in 4.8 s , how much mechanical energy is lost and what happens to the lost energy?
a. 9.7J
b. 39J
c. 127J
d. 19.4 J
11) A 70 kg person walks at a steady pace of $5 \mathrm{~km} / \mathrm{h}$ on a treadmill with a 5% grade (this means the vertical distance is only 5% of the horizontal distance). Walking on a flat surface requires 300W of power. Assuming the metabolic power required is equal to the combined amount of walking on a flat surface and the rate of work of the climb, how much power is required?
a. 300 W
b. 315 W
c. 350 W
d. 370 W
12) Two figure skaters, one weighing 625 N and the other 725 N , push off against each other on frictionless ice. If the heavier skater travels at $1.5 \mathrm{~m} / \mathrm{s}$, how fast will the lighter one travel?
a. $\quad 0.37 \mathrm{~m} / \mathrm{s}$
b. $\quad 1.5 \mathrm{~m} / \mathrm{s}$
c. $\quad 1.74 \mathrm{~m} / \mathrm{s}$
d. $\quad 3.89 \mathrm{~m} / \mathrm{s}$
13) On an air track, a 400 g puck (1) moving to the right at $2 \mathrm{~m} / \mathrm{s}$ collides elastically with a 500 g puck (2) moving in the opposite direction at $3 \mathrm{~m} / \mathrm{s}$. Find the velocity of each puck after the collision.
a. $\quad v_{1}=-1.44 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{2}=1.44 \mathrm{~m} / \mathrm{s}$
b. $v_{1}=-1.44 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{2}=3.55 \mathrm{~m} / \mathrm{s}$
c. $v_{1}=-2 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{2}=3 \mathrm{~m} / \mathrm{s}$
d. $v_{1}=-3.55 \mathrm{~m} / \mathrm{s}, v_{2}=1.44 \mathrm{~m} / \mathrm{s}$
14) Three odd-shaped blocks of chocolate have the following masses and center-of-mass coordinates:
a. $0.3 \mathrm{~kg},(0.2,0.3)$
b. $0.4 \mathrm{~kg},(0.1,-0.4)$
c. $0.2 \mathrm{~kg},(-0.3,0.6)$

Find the coordinates of the center-of-mass of the whole system.
d. $(-0.0444,0.0556)$
e. $(0.0444,0.0556)$
f. $(0.0444,-0.0556)$
g. $(-0.0444,-0.0556)$
15) If a wheel 212 cm in diameter takes 2.25 s for each revolution, find its period and angular speed (in rad/s).
a. $2.25 \mathrm{~s}, 2.79 \mathrm{rad} / \mathrm{s}$
b. $1.25,2.79 \mathrm{rad} / \mathrm{s}$
c. $2.25 \mathrm{~s}, 5.58 \mathrm{rad} / \mathrm{s}$
d. $1.25 \mathrm{~s}, 5.58 \mathrm{rad} / \mathrm{s}$
16) A car is traveling at a constant speed on the highway. Its tires have diameter of 61 cm and are rolling without slipping or sliding. If the angular speed of the tires is $50 \mathrm{rad} / \mathrm{s}$, what is the speed of the car in SI units?
a. $\quad 2.3 \mathrm{~m} / \mathrm{s}$
b. $\quad 9.8 \mathrm{~m} / \mathrm{s}$
c. $\quad 15.3 \mathrm{~m} / \mathrm{s}$
d. $\quad 19.2 \mathrm{~m} / \mathrm{s}$
17) A 4 N and 10 N force act on an object. The moment arm of the 4 N force is 0.2 m . If the 10 N force produces five times the torque of the 4 N force, what is its moment arm?
a. 0.4 m
b. 0.7 m
c. 1.3 m
d. 1.7 m
18) A unform 2 kg solid disk of radius $\mathrm{R}=0.4 \mathrm{~m}$ is free to rotate on a frictionless horizontal axle through its center. The disk is initially at rest, and then a 10 g bullet traveling at $500 \mathrm{~m} / \mathrm{s}$ is fired into it as shown. If the bullet embeds itself in the disk at a vertical distance of 0.2 m above the axle, what will be the angular velocity of the disk?

a. $\quad 4.1 \mathrm{rad} / \mathrm{s}$
b. $6.2 \mathrm{rad} / \mathrm{s}$
c. $\quad 9.3 \mathrm{rad} / \mathrm{s}$
d. $12 \mathrm{rad} / \mathrm{s}$
19) Using the graph provided, at which of the following times does the object have the most negative acceleration a_{x} ?

a. $\quad t=\mathrm{T} / 4$
b. $\quad t=\mathrm{T} / 2$
c. $t=3 \mathrm{~T} / 4$
d. $t=\mathrm{T}$
20) A pendulum on earth swings with angular frequency ω. On an unknown planet, it swings with angular frequency $\omega / 2$. The acceleration due to gravity on this planet is...
a. 4 g
b. $2 g$
c. $\quad \mathrm{g} / 2$
d. $g / 4$
21) If you double the wavelength λ of a wave on a string, what happens to the wave speed v and the wave frequency f ?
a. $\quad v$ is doubled and f is doubled
b. $\quad v$ is doubled and f is unchanged
c. v is unchanged and f is doubled
d. v is unchanged and f is halved
22) The sound intensity is measured to be 30 dB at a distance of 50 m from a point source that emits sound waves uniformly in all directions. At what distance from this same source is the sound intensity level 50 dB ?
a. 5 m
b. 10 m
c. 50 m
d. 100 m
23) A train is moving due west at a constant speed of $24 \mathrm{~m} / \mathrm{s}$. You are due west of the train, traveling due east toward the train with a constant speed of $16 \mathrm{~m} / \mathrm{s}$. The train whistle is emitting sound waves with a frequency of 600 Hz . The speed of sound in air is $344 \mathrm{~m} / \mathrm{s}$. What frequency of the sound do you hear?
a. 535 Hz
b. 615 Hz
c. 675 Hz
d. 587 Hz
24) A small circular hole 6 mm in diameter is cut in the side of a large water tank. The top of the tank is open to the air. The water is escaping from the hole at a speed of $10 \mathrm{~m} / \mathrm{s}$. How far below the water surface is the hole?
a. 25 m
b. 7.3 m
c. 2.3 m
d. 5.1 m
25) When the temperature of the piece of metal is increase and the metal expands, will the gap between the ends become...

a. Narrower
b. Wider
c. Unchanged
d. Not enough information given
26) The blood plays an important role in removing heat from the body by brining it to the surface where it radiates away. Assume the temperature of the bottom layer of skin is 37C and the temperature of the outer surface is 30C. Also assume the average thickness of the skin to be 0.75 mm . Assume body surface-area of $2 \mathrm{~m}^{2}$ and a net heat loss of 75 W while at rest. Using these assumptions, what is the thermal conductivity of this assumed person's skin?
a. $\quad 4 \mathrm{E}-3 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right)$
b. $\quad 2 \mathrm{E}-2 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right)$
c. $\quad 1 E+4 W /\left(m^{*} K\right)$
d. $\quad 4 \mathrm{~W} /\left(\mathrm{m}^{*} \mathrm{~K}\right)$
27) How many molecules are in 3.2 moles of Iron ? $\left(N_{A}=6.022 \mathrm{E}+23\right.$, Molar Mass $\left.=55.8 \mathrm{~g} / \mathrm{mol}\right)$
a. $\quad 1.927 \mathrm{E}+24$
b. $6.022 \mathrm{E}+23$
c. $\quad 178.56$
d. $3.36 \mathrm{E}+25$
28) If 5 g of liquid helium is converted into a gas at standard temperature and pressure, what is the length of the side of a cube that would contain the gas? (The density of liquid helium is 0.125 $\mathrm{g} / \mathrm{cm}^{3}$)
a. 0.1 m
b. 0.7 m
c. 0.3 m
d. 1.2 m
29) Compute the change in entropy of 1 kg of ice at 0 C when it melts and converts to liquid water. (L_{f} $=3.34 \mathrm{E} 3 \mathrm{~J} / \mathrm{kg}$)
a. $\quad 1527 \mathrm{~J} / \mathrm{K}$
b. $1220 \mathrm{~J} / \mathrm{K}$
c. $1823 \mathrm{~J} / \mathrm{K}$
d. $348 \mathrm{~J} / \mathrm{K}$
30) A Carnot engine has an efficiency of 59% and performs $2.5 \mathrm{E}+4 \mathrm{~J}$ of work in each cycle. How much heat does the engine extract from its heat source in each cycle?
a. 4 KJ
b. 42 J
c. 42 KJ
d. 4 J

